
Towards Hard Realtime Response from the Linux Kernel on SMP

Hardware

Paul E. McKenney

IBM Beaverton

paulmck@us.ibm.com

Dipankar Sarma

IBM India Software Laboratory

dipankar@in.ibm.com

Abstract

Not that many years ago, many people doubted that
a single operating system could support both desktop
and server workloads. Linux is well on its way to
proving these people wrong.

But new times bring new challenges, and so there
are now many people who doubt that a single oper-
ating system can support both both general-purpose
and realtime workloads. This question is still open,
although Linux has been used for a surprising num-
ber of realtime applications for quite some time. This
paper looks at a few mechanisms that have been pro-
posed to push Linux further into the realtime arena,
with an eye towards maintaining Linux’s high-end
performance and scalability.

In other words, can Linux offer realtime support
even when running on SMP hardware?

1 Introduction

Traditionally, hard realtime response has been de-
signed into operating systems offering it. Retrofitting
hard realtime response into an existing general-
purpose OS may not be impossible, but is quite dif-
ficult: all non-preemptive code paths in the OS must
have deterministic execution time. Since this requires
a full rewrite of the OS, the traditional approach has

been to simply create a new OS specially designed to
offer hard-realtime response. There have also been
the first stirrings of desire for multiprocessor systems
with hard realtime response.

Although the Linux
TM

2.6 kernel offers much im-
proved realtime response, performance, and scalabil-
ity when compared to the 2.4 kernel, it does not offer
hard realtime response, nor has it been able to pro-
vide scheduling latencies below about 100 microsec-
onds. However, this is changing with the advent of
two new approaches.

The first approach, lead up by Ingo Molnar, is to
aggressively reduce the amount of time that the ker-
nel is non-preemptible. This effort has been quite
successful, with average scheduling latencies reported
to be as low as one microsecond on single-CPU sys-
tems. One of the challenges met in this effort was
that of creating a specialized RCU implementation
that met these scheduling latencies. However, as we
will see, although this approach preserves most RCU
semantics, it does so in a way that does not scale well
on multiprocessor systems.

The second approach is an extension of the
interrupt-shielding techniques used by Dipankar
Sarma, Dinakar Guniguntala, and Jim Houston.
Their approach directs interrupts away from a par-
ticular CPU of an SMP system, thereby reducing the
scheduling latency on that particular CPU. The ad-

1

vent of low-cost hardware multithreaded and multi-
core CPUs makes this approach quite attractive for
some applications, as it provides excellent realtime
latency for CPU-bound user-mode applications.

This paper looks at the problem of producing a
kernel that both scales and supports microsecond
scheduling latencies. Section 2 reports on attempts,
unsuccessful thus far, to make an RCU implementa-
tion that can run in the realtime-preempt environ-
ment but with excellent performance and scalability
on SMP hardware. Section 3 gives a brief overview of
an alternative approach that potentially offers both
hard realtime and good scalability. Finally Section 4
presents concluding remarks.

2 Realtime-Preempt Approach

Ingo Molnar has implemented a fully preemptible
approach to extreme realtime [8]. In this ap-
proach, almost all spinlocks are mapped into block-
ing locks, and fine-grained scheduling-latency mea-
surement tools are used to identify and recode kernel
codepaths with excessive scheduling latency. RCU
read-side critical sections are also mapped into block-
ing locks, requiring additional APIs, as summarized
in Table 1.

RCU requires special attention, because: (1) RCU
callbacks execute at softirq level, and can impose un-
acceptable scheduling delay [10], and (2) RCU read-
side critical sections must suppress preemption in
preemptible kernels. Ingo Molnar transformed RCU
to a locking protocol, so that the RCU read-side crit-
ical sections acquire a sleeplock, the same sleeplock
used by updaters. When the lock is a reader-writer
lock, readers can recursively acquire it (see Figure 1),
as needed to accommodate nested RCU read-side
critical sections, but only a single task may read-hold
such a lock. However, writers cannot recursively ac-
quire this lock, thus losing RCU’s ability to uncondi-
tionally upgrade from an RCU read-side critical sec-
tion to a write-side critical section. On the brighter
side, this implementation permits call rcu() to im-
mediately invoke RCU callbacks, since the lock pre-
vents any readers from executing concurrently with a
writer. This immediate invocation prevents memory-

consumption problems that could otherwise occur in
workloads that generate large numbers of RCU call-
backs.

This approach works well, but it does lead to the
question of whether there is a way to accommodate
the realtime requirements while preserving more of
RCU’s semantics, performance, and scalability. The
next section summarizes RCU’s properties from a re-
altime perspective.

2.1 Summary of Desirable RCU Prop-
erties

The desired properties of RCU are as follows:

• Deferred destruction. No data element may be
destroyed (for example, freed) while an RCU
read-side critical section is referencing it. This
property absolutely must be implemented, as
failing to do so will break code that uses RCU.

• Reliable. The implementation must not be prone
to gratuitous failure; it must be able to run 24x7
for months at a time, and preferably for years.

• Callable from IRQ. Since RCU is used from
softirq state, a realtime implementation must ei-
ther eliminate softirq and interrupt states, elimi-
nate use of RCU from these states, or make RCU
callable from these states.

• Preemptible read side. RCU read-side critical
sections can be quite large, degrading realtime
scheduling response. Preemptible RCU read-
side critical sections avoid such degradation.

• Small memory footprint. Many realtime systems
are configured with modest amounts of memory,
so it is highly desirable to limit the number of
outstanding RCU callbacks.

• Independent of memory blocks. The implemen-
tation should not make assumptions about the
size and extent of the data elements being pro-
tected by RCU, since such assumptions constrain
memory allocation design and can impose in-
creased complexity.

2

Name Description

rcu read lock spin(lock) Begin RCU read-side critical section corresponding to a
spinlock-guarded write-side critical section. Nesting is only
permitted for different locks.

rcu read unlock spin(lock) End RCU read-side critical section corresponding to a
spinlock-guarded write-side critical section.

rcu read lock read(lock) Begin RCU read-side critical section corresponding to a
reader-writer-spinlock-guarded write-side critical section.
Nesting is permitted.

rcu read unlock read(lock) End RCU read-side critical section corresponding to a
reader-writer-spinlock-guarded write-side critical section.

rcu read lock bh read(lock) Begin RCU read-side critical section corresponding to a
reader-writer-spinlock-guarded write-side critical section,
blocking bottom-half execution. Nesting is permitted.

rcu read unlock bh read(lock) End RCU read-side critical section corresponding to a
reader-writer-spinlock-guarded write-side critical section.

rcu read lock down read(rwsem) Begin RCU read-side critical section corresponding to
a reader-writer-semaphore-guarded write-side critical sec-
tion. Nesting is permitted.

rcu read unlock up read(rwsem) End RCU read-side critical section corresponding to a
reader-writer-semaphore-guarded write-side critical sec-
tion.

rcu read lock nort() Ignore RCU read-side critical section in realtime-preempt
kernels.

rcu read unlock nort() Ignore RCU read-side critical section in realtime-preempt
kernels.

Table 1: Realtime-Preempt RCU API

• Synchronization-free read side. RCU read-side
critical sections should avoid expensive synchro-
nization instructions or cache misses. It is most
important to avoid global locks and atomic in-
structions that modify global memory, as these
operations can inflict severe performance and
scalability bottlenecks. Avoiding memory bar-
riers is desirable but not as critical.

• Freely nestable read-side critical sections. Re-
strictions on nestability can result in code dupli-
cation, so should be avoided if possible.

• Unconditional read-to-write upgrade. RCU per-
mits a read-side critical section to acquire the
corresponding write-side lock. This capability
can be convenient in some cases. However, since

it is rarely used, it cannot be considered manda-
tory.

• Compatible API. A realtime RCU implementa-
tion should have an API compatible with that in
the kernel.

The realtime-preemptible RCU implementation
does defer destruction, but does not provide a
synchronization-free read side. It also restricts read-
side nesting, for example, the code fragments shown
in Figure 2 are legal in classic RCU, but result
in deadlock in the realtime-preemptible implementa-
tion. It prohibits read-to-write upgrade, resulting in
some code duplication, for example, in the System V
IPC code. It also changes the API, but arguably in
a good way, documenting the locks corresponding to

3

1 static void __sched

2 down_read_mutex(struct rw_semaphore *rwsem, unsigned long eip)

3 {

4 /*

5 * Read locks within the write lock succeed.

6 */

7 if (rwsem->lock.owner == current) {

8 rwsem->read_depth++;

9 return;

10 }

11 SAVE_BKL(__down_mutex(&rwsem->lock, eip));

12 }

Figure 1: Recursive Read Acquisition

the RCU read-side critical sections.

void foo()

{

rcu_read_lock_read(lockA);

...

rcu_read_lock_read(lockB);

}

void bar()

{

rcu_read_lock_read(lockB);

...

rcu_read_lock_read(lockA);

}

Figure 2: ABA Deadlock Scenario

It would be quite useful to have a realtime-friendly
RCU implementation with synchronization-free read-
side critical sections, as this would give larger multi-
processor Linux systems these realtime capabilities.
It is well known that use of global locks for the RCU
read-side critical sections results in high contention
on moderate-sized SMP systems [1, 9]. The remain-
der of this section examines various alternatives in
an attempt to come up with an approach that both
scales and offers realtime response. Those wishing to
skip straight to the scorecard should refer to Table 2

in Section 2.16.

2.2 Classic RCU

This section reviews slight variations on the classic
Linux 2.6 RCU implementation, first described else-
where [10]:

1. Run all RCU callbacks from preemptible kernel
daemons.

2. Invoke RCU callbacks directly from call rcu()

on uniprocessor systems, in situations where this
can be done safely.

3. Process only a few RCU callbacks at a time at
the softirq level.

Although these approaches greatly reduce or elimi-
nate the realtime scheduling-latency degradation due
to invoking large numbers of RCU callbacks, they do
nothing about similar degradation caused by overly
long RCU read-side critical sections. Given that
there have been RCU patches that walk the entire
task list in a single RCU read-side critical section,
this degradation can be severe indeed.

In addition, the amount of memory consumed by
RCU callbacks waiting for a grace period to expire,
though negligible on large servers, can be a serious
problem for embedded systems.

The classic RCU implementation therefore seems
inappropriate for realtime-preemptible kernels.

4

2.3 Preemptible RCU Read-Side
Critical Sections

Perhaps the simplest solution is to make only vol-
untary context switch be a quiescent state. This
has been shown to work [2, 6], and does permit pre-
emptible RCU read-side critical sections, but is prone
to indefinite grace periods if a given low-priority task
remains preempted indefinitely. This approach is
therefore absolutely unacceptable for production use
in the Linux kernel, particularly in restricted-memory
environments.

2.4 Jim Houston Patch

Jim Houston submitted a patch to RCU that en-
ables all interrupts to be directed away from a given
CPU [4]. The changes are needed because the main-
line RCU implementation critically depends on the
scheduling-clock interrupt to detect grace periods and
advance RCU callbacks.

This patch uses a per-CPU flag that indicates
whether the corresponding CPU is in an RCU
read-side critical section. This flag is set by
rcu read lock(), and is accompanied by a counter
that allows the usual nesting of RCU read-side critical
sections. Other CPUs can read this flag, and if they
detect that a given CPU is holding up a grace period,
they will use the cmpxchg() primitive that is avail-
able on some CPU types to set a DO RCU COMPLETION

flag.
When the interrupt-free CPU encounters the

rcu read unlock() that completely exits the RCU
read-side critical section, it atomically exchanges the
flag with zero using the xchg() primitive. If the old
value of this flag indicates that a quiescent state is re-
quired, it invokes rcu quiescent() for this purpose,
advancing RCU callbacks and invoking any that have
persisted through a full grace period.

This approach provides almost all of RCU’s de-
sirable features. Unfortunately, it does not permit
RCU read-side critical sections to be preempted, nor
does it provide synchronization-free RCU read-side
critical sections. In particular, rcu read unlock()

does atomic instructions on a flags variable that is
also atomically manipulated by other CPUs, which

is quite expensive on large SMP systems.

2.5 Reader-Writer Locking

Since reader-writer locking is in some ways similar to
RCU, it is a tempting alternative. And in fact reader-
writer locks are used in the realtime preemptible
RCU implementation.

However, reader-writer locks inflict substantial
overhead on readers, prevent read-side critical sec-
tions from being freely nested, and can in no way
support unconditional upgrade from reader to writer
critical sections. This latter issue can be subtle, and
the key to understanding it is to consider cases where
several readers on different CPUs simultaneously at-
tempt an upgrade. Only one of them can succeed;
the rest must fail, perhaps silently. The only other
alternative is deadlock.

This approach also requires a change to the clas-
sic RCU API, but this is arguably an improvement,
since read-side critical sections are flagged with the
corresponding write-side lock. Experience indicates
that there will be situations where there are either
many corresponding write-side locks or none at all,
but these situations can be addressed as they arise.

2.6 Hazard Pointers

The idea behind hazard pointers is to maintain ex-
plicit per-CPU (or per-task) pointers to the data ele-
ments that are being referenced by the RCU read-side
critical section [3, 7]. This approach introduces some
complexity because the hazard pointers must be re-
moved some time after the critical section drops its
reference to the corresponding data element.

It is fairly easy to transform the RCU APIs to use
hazard pointers:

• The rcu read lock() primitive must increment
a per-task counter. Interrupt handlers would
presumably use their CPU’s idle task.

• The rcu dereference() primitive assigns a haz-
ard pointer to guard the pointer passed to it.
The task maintains multiple lists of such hazard
pointers, indexed by the per-task counter that is

5

incremented by rcu read lock(). Memory bar-
riers are required so that the update side sees
the hazard pointer before the reference is actu-
ally acquired.

• The rcu read unlock() primitive must execute
a memory barrier, free up the current group
of hazard pointers, then decrement the per-task
counter. Because of the grouping, freeing up the
hazard pointers can be a simple linked-list oper-
ation.

• The call rcu() primitive must check to see if
the pointer is covered by any task’s hazard point-
ers, and must defer the callback if so. Otherwise,
the callback may be invoked immediately. Note
that it is necessary to detect a hazard pointer
referencing any part of the data structure. This
is important because the hazard pointer might
have been placed on a struct list head lo-
cated in the middle of the data structure, and
call rcu() will be given a reference to some
struct rcu head that is located elsewhere in
this same data structure.

In the general case, which might involve struc-
tures containing variable-length arrays of other
structures, an assist from the memory allocator
will be needed. Alternatively, if data structures
are appropriately aligned, the hazard pointers
can reference a given fixed block of memory
rather than a given data structure.

One problem is the large amount of storage re-
quired in the worst case: in the presence of pre-
emption, the worst-case number of hazard pointers
is unbounded. To see this, imagine a large number of
tasks, all traversing a long RCU-protected list, and
each being preempted just before reaching the end of
the list. The number of hazard pointers required will
be the number of elements times the number of tasks,
which is ridiculously large.

But this is not the theoretical worst case. Sup-
pose that a list is traversed, and at each element
another function is called, which itself traverses the
list. The number of hazard pointers required in this
case, which is still not the theoretical worst case, will
be the square of the number of list elements times

the number of tasks. One can construct increasingly
ornate (and, thankfully, increasingly unlikely) situa-
tions that consume ever-greater numbers of hazard
pointers.

It is possible to use reference counters to limit the
memory consumption, but this requires that a task’s
hazard pointer be efficiently located given the refer-
enced data structure and the task. This is possible,
but becomes considerably more complex. And the
hazard pointers must grow larger to accommodate
the additional state required.

Rather than following this example to the bitter
end, we turn now to dynamic allocation of hazard
pointers.

2.7 Hazard Pointers with Memory-
Allocation Failure Indication

We could change the rcu dereference() API to re-
port memory-allocation failures to the caller. How-
ever, this would introduce significant complexity,
since currently rcu dereference() cannot fail. The
resulting unwind code would not be pretty.

That said, the memory usage could be limited to
any desired value, simply by using the appropriate
failure checks.

2.8 Hazard Pointers with Memory-
Allocation Failure Kernel Death

Although the theoretical number of hazard pointers
is quite large, in many cases the actual number used
will be quite manageable. After all, a given critical
section can use only so many hazard pointers while
still maintaining realtime response, right?

This approach would provide a reasonable number
of hazard pointers, based on the actual number used
by the desired workload. If an attempt to allocate a
hazard pointer fails, just die!

There are probably situations where this could
work, but this possibility of random failure will not
be acceptable to all users.

6

2.9 Hazard Pointers with Blocking
Memory Allocation

Another variation on this theme is to use blocking
memory allocation. This approach normally would
not be feasible, however, most spinlocks have been
converted into blocking locks. Nonetheless, block-
ing memory allocations are not permitted from inter-
rupt handlers or from the softirq environment, nor
are they permitted while holding any of the remain-
ing raw spinlocks. Therefore, blocking memory al-
location might be used in some cases, but is not a
general solution.

2.10 Reference Counters

The basic idea is seductively simple, namely, have
rcu dereference() increment a reference counter
associated with the data element that is protected
by RCU. The problem appears when it comes time
to decrement this reference counter. Tracking the ref-
erence counters to be decremented consumes as much
memory as do the hazard pointers themselves.

Nothing to see here, time to move along...

2.11 Explicit rcu donereference()
Primitive

One way to address the problems with hazard point-
ers and reference counters is to provide an explicit
rcu donereference() primitive. The purpose of this
primitive is to signal that a given pointer, which
was subject of a prior rcu dereference() invoca-
tion, will no longer be dereferenced, at least pending
a later rcu dereference(). This primitive will need
to invoke a memory barrier so that the update-side
code does not see the hazard pointer disappear until
the corresponding reference has been dropped.

This rcu donereference() can then invalidate
hazard pointers or decrement reference counts. Given
properly placed rcu donereference() calls, clean-
ing up hazard pointers and reference counts is triv-
ial. Furthermore, many fewer hazard pointers are
required. A linked list may be traversed with but
a single hazard pointer, pointing to each element in

turn. In contrast, the earlier approaches required one
hazard pointer per element in the list.

Like all the other hazard-pointer based approaches,
there must be a way to identify the size and extent of
each RCU-protected block of memory, since a given
read-side critical section might be traversing one of a
number of lists contained in that element.

Unfortunately, nontrivial changes are required
to add the needed rcu donereference() calls.
One might hope to bury such calls into the
list for each.*rcu() primitives, as shown by the
(broken!) code in Figure 3. Of course, for this to
work, the rcu dereference() primitive needs to po-
litely ignore a NULL pointer. But even with this
concession, this code is unsafe. To see this, consider
the code fragment from net/bridge/br forward.c

shown in Figure 4.
This is a perfectly sane piece of code, which

leaves the pointer prev assigned to the last mem-
ber of the list for which should deliver() suc-
ceeds, or NULL if there is no such member.
Unfortunately, the preceding implementation of
list for each entry rcu() would have released the
hazard pointers (or reference counts) that were pro-
tecting the memory pointed to by prev on the next
pass through the loop.

This can be manually fixed as shown in Fig-
ure 5. Here, the explicit rcu dereference() com-
pensates for the rcu donereference() contained in
the list for each entry rcu().

And these are not the only changes required. It
is also necessary to track down all the places where
the reference to prev is dropped and to add an
rcu donereference() there as well. This is not
too difficult in this particular case, since only one
more rcu donereference() is required, and it is only
a few lines after the code fragment shown in Fig-
ure 5. However, it is not hard to imagine cases where
the prev pointer might travel far and wide through-
out the kernel. Here are some rules for where the
rcu donereference() primitives should be placed:

1. When the pointer goes out of scope.

2. When the pointer is overwritten.

3. When an rcu read unlock() is encountered

7

1 #define list_for_each_entry_rcu(pos, head, member) \

2 for (pos = list_entry((head)->next, typeof(*pos), member); \

3 rcu_donereference(pos), \

4 prefetch(pos->member.next), &pos->member != (head); \

5 pos = rcu_dereference(list_entry(pos->member.next, \

6 typeof(*pos), member)))

Figure 3: Broken Hazard-Pointer List Scan

1 prev = NULL;

2 list_for_each_entry_rcu(p, &br->port_list, list) {

3 if (should_deliver(p, skb)) {

4 if (prev != NULL) {

5 struct sk_buff *skb2;

6

7 if ((skb2 = skb_clone(skb, GFP_ATOMIC)) == NULL) {

8 br->statistics.tx_dropped++;

9 kfree_skb(skb);

10 return;

11 }

12

13 __packet_hook(prev, skb2);

14 }

15 prev = p;

16 }

17 }

Figure 4: Use of Broken Hazard-Pointer List Scan

(taking nesting into account, of course).

4. When the pointer is assigned to a globally acces-
sible RCU-protected data structure.

Of course, if the value is assigned to a second
local pointer, an additional rcu dereference() /
rcu donereference() pair may be required.

Rule #4 is problematic. It is good practice to
have a single set of functions to handle a given
data structure, regardless of whether that data struc-
ture is globally accessible or local to this CPU.
But with rule #4, these functions must execute an
rcu donereference() if the structure is global, but
not if it is local. There is a name for this situation,
namely “code bloat”.

2.12 Lock-Based Deferred Free

RCU provides a very limited notion of mutual ex-
clusion, namely that a reader referencing an item in
an RCU read-side critical section will exclude an up-
dater attempting to free that item. This exclusion
works by deferring the updater, either by blocking
a synchronize kernel() inovocation until all cur-
rent readers exit their RCU read-side critical sec-
tions, or by deferring invocation of a call rcu() call-
back,again until all current readers exit their RCU
read-side critical sections. RCU provides a very
lightweight deferral mechanism, but this lightness
is achieved by deferring much longer than is actu-
ally required, which in turn increases the number of
outstanding callbacks, which can be problematic on

8

1 prev = NULL;

2 list_for_each_entry_rcu(p, &br->port_list, list) {

3 if (should_deliver(p, skb)) {

4 if (prev != NULL) {

5 struct sk_buff *skb2;

6

7 if ((skb2 = skb_clone(skb, GFP_ATOMIC)) == NULL) {

8 br->statistics.tx_dropped++;

9 kfree_skb(skb);

10 return;

11 }

12

13 __packet_hook(prev, skb2);

14 }

15 rcu_donereference(prev);

16 prev = p;

17 rcu_dereference(prev);

18 }

19 }

Figure 5: Manually Fixed Hazard-Pointer List Scan

small-memory configurations.
This suggests use of a heavier weight, but more im-

mediate, exclusion strategy, and “heavy weight mu-
tual exclusion” immediately brings to mind locking.
But we need not make reads exclude updates, since
any bug-free RCU code already handles concurrent
reads and updates. We need only exclude execution
of reads from execution of callbacks that were reg-
istered after the start of the corresponding read. It
is perfectly legal to allow callbacks to run in parallel
with reads that started after the corresponding call-
back was registered. Again, any bug-free RCU code
already handles concurrent reads and callbacks.

The trivial implementation in the next section
demonstrates these principles.

2.12.1 Trivial Implementation

This section describes a simple implementation with
extremely limited scalability, whose code is displayed
in Figure 6. In addition, this overly simple im-
plementation adds some unwanted constraints to
call rcu() usage, since it cannot be called from:

1. an RCU read-side critical section, since this
would result in deadlock, and

2. an interrupt handler, since this would again re-
sult in deadlock if an RCU read-side critical sec-
tion were interrupted.

Nonetheless, its 29 lines of code, counting whites-
pace, serve to illustrate the principles underlying
lock-based deferred free. Straightforward elabora-
tions of this example remove these disadvantages.

Line 1 of the figure defines the reader-writer
lock that is used to defer frees. Lines 3-
7 show the implementation of rcu read lock(),
which simply read-acquires the lock. Lines 9-
13 show rcu read unlock(), which, predictably,
read-releases the lock. Lines 15-20 display
synchronize kernel(), which write-acquires the
lock then immediately releases it, which guarantees
that any RCU read-side critical sections that were
in progress before the call to synchronize kernel()

have completed. Lines 22-29 display call rcu(),
which simply invokes synchronize kernel() and in-
vokes the callback, which guarantees that any RCU

9

1 rwlock_t rcu_deferral_lock = RW_LOCK_UNLOCKED;
2
3 void
4 rcu_read_lock(void)
5 {
6 read_lock(&rcu_deferral_lock);
7 }
8
9 void
10 rcu_read_unlock(void)
11 {
12 read_unlock(&rcu_deferral_lock);
13 }
14
15 void
16 synchronize_kernel(void)
17 {
18 write_lock(&rcu_deferral_lock);
19 write_unlock(&rcu_deferral_lock);
20 }
21
22 void
23 call_rcu(struct rcu_head *head,
24 void (*func)(struct rcu_head *rcu))
25 {
26 synchronize_kernel();
27 func(head);
28 }

Figure 6: Trivial Lock-Based Deferred Free

read-side critical sections that were in progress be-
fore the call to call rcu() have completed before
the callback is invoked.

The rcu dereference() and
rcu assign pointer() primitives are unchanged
from their current Linux 2.6 kernel implementation,
which provides memory barriers for those CPU
architectures that require them.

Those who might hope that this 29-line implemen-
tation could completely replace the “classic” RCU
implementation in the Linux kernel should note the
following:

1. The lock-based deferred-free implementation im-
poses significant synchronization overhead on
readers.

2. The use of reader-writer locks results in severe
memory contention, even for read-only access,
on SMP systems.

3. A similar “toy” implementation of “classic” RCU
is only 26 lines, as shown in Figure 7.

1 #define rcu_read_lock()
2 #define rcu_read_unlock()
3
4 void synchronize_kernel(void)
5 {
6 cpumask_t oldmask;
7 cpumask_t curmask;
8 int cpu;
9

10 if (sched_getaffinity(0, &oldmask) < 0) {
11 oldmask = cpu_possible_mask;
12 }
13 for_each_cpu(cpu) {
14 sched_setaffinity(0, cpumask_of_cpu(cpu));
15 schedule();
16 }
17 sched_setaffinity(0, oldmask);
18 }
19
20 void
21 call_rcu(struct rcu_head *head,
22 void (*func)(struct rcu_head *rcu))
23 {
24 synchronize_kernel();
25 func(head);
26 }

Figure 7: Toy Implementation of Classic RCU

The following sections present shortcomings of the
trivial implementation of the lock-based deferred-free
approach, then.

2.12.2 Shortcomings of Trivial Implementa-

tion

The trivial implementation in the previous section
has a number of shortcomings, including:

1. deviations from RCU semantics, since
call rcu() cannot be invoked from an RCU
read-side critical section or from interrupt
handlers;

2. memory contention on the rcu deferral lock;

3. write-side lock contention on
rcu deferral lock;

4. memory-constrained environments require some
way to actively reap callbacks; and

5. CPU hotplug is not taken into account.

These shortcomings are addressed in the following
sections, starting with the deviations from semantics.

10

2.12.3 Exact RCU Semantics

The difficulty with the trivial implementa-
tion was that call rcu() write-acquired the
rcu deferral lock, which prohibits use of
call rcu() anywhere that might appear in an
RCU read-side critical section, including functions
called from within such critical sections, whether
invoked directly or via an interrupt handler. One
way to avoid this prohibition is for call rcu() to
place a callback on a queue, so that some other piece
of code write-acquires the lock from a controlled
environment. This environment might be a kernel
daemon or work queue. It cannot be any sort of
interrupt or softirq handler unless interrupts are
disabled during RCU read-side critical sections,
which would have the undesired effect of rendering
these critical sections non-preemptible.

Data structures to support queuing of callbacks are
shown in Figure 8. The rcu data structure is repli-
cated per-CPU. The waitlist and waittail fields
hold a linked list of RCU callbacks that are waiting
for a grace period to expire. The batch field con-
tains the batch number that was in effect at the time
that the callbacks on waitlist were registered. The
donelist and donetail fields hold a linked list of
RCU callbacks that have passed through a grace pe-
riod, and are therefore waiting to be invoked.

The rcu ctrlblk structure is global, and con-
tains a reader-writer lock that operates similarly to
rcu deferral lock. The batch field counts the
number of batches of RCU callbacks that have been
processed.

The RCU read-side critical sections work in the
same manner as they did in the trivial implementa-
tion, as shown in Figure 9.

The update side, shown in Figure 10, is where most
of the changes occur. The synchronize kernel()

primitive (lines 1-7) is very similar, adding only the
counter increment. However, the implementation of
call rcu() changes completely, as shown in lines 9-
24. Lines 16-17 initialize the rcu head fields. Line 18
disables interrupts to avoid races between invoca-
tions from process and irq contexts. Line 19 in-
vokes rcu do my batch() process any of this CPU’s
callbacks whose grace period has already expired.

1 struct rcu_data {
2 long batch;
3 struct rcu_head *waitlist;
4 struct rcu_head **waittail;
5 struct rcu_head *donelist;
6 struct rcu_head **donetail;
7 };
8 struct rcu_ctrlblk {
9 rwlock lock;

10 long batch;
11 }
12 DECLARE_PER_CPU(struct rcu_data, rcu_data);
13 struct rcu_ctrlblk rcu_ctrlblk = {
14 .lock = RW_LOCK_UNLOCKED,
15 .batch = 0,
16 };

Figure 8: LBDF, Exact Semantics (Data)

1 void
2 rcu_read_lock(void)
3 {
4 read_lock(&rcu_ctrlblk.lock);
5 }
6
7 void
8 rcu_read_unlock(void)
9 {

10 read_unlock(&rcu_ctrlblk.lock);
11 }

Figure 9: LBDF, Exact Semantics (Read Side)

Lines 20-22 enqueue this RCU callback, and line 23
restores interrupts.

Figure 11 shows how callbacks are processed. This
code might be called from a kernel daemon, from
a work queue, or from an out-of-memory handler
(which should first invoke synchronize kernel(), of
course!). Line 7 disables interrupts (redundant when
called from call rcu()). Line 9 is a memory bar-
rier to prevent the CPU from reordering the test of
the batch numbers before any prior removal of an
element from an RCU-protected list. If the test on
line 10 indicates that a grace period has expired, then
lines 11-14 move any callbacks in waitlist to the end
of donelist, and line 15 snapshots the new batch
number. Line 18 checks to see if there are any call-
backs waiting to be invoked, and, if so, lines 19-20
removes them from donelist, line 20 restores inter-
rupts (thus permitting callback invocation to be pre-
empted, at least when not called from call rcu(),
and the while loop from lines 22-26 processes the call-

11

1 void
2 synchronize_kernel(void)
3 {
4 write_lock_bh(&rcu_ctrlblk.lock);
5 rcu_ctrlblk.batch++;
6 write_unlock_bh(&rcu_ctrlblk.lock);
7 }
8
9 void
10 call_rcu(struct rcu_head *head,
11 void (*func)(struct rcu_head *rcu))
12 {
13 unsigned long flags;
14 struct rcu_data *rdp;
15
16 head->func = func;
17 head->next = NULL;
18 local_irq_save(flags);
19 rcu_do_my_batch();
20 rdp = &__get_cpu_var(rcu_data);
21 *rdp->waittail = head;
22 rdp->nexttail = &head->next;
23 local_irq_restore(flags);
24 }

Figure 10: LBDF, Exact Semantics (Update Side)

backs. If there are no callbacks waiting to be invoked,
line 28 restores interrupts.

This approach is far from perfect:

• Since the CONFIG PREEMPT RT kernel only per-
mits one thread at at time to read-acquire a lock,
this approach is subject to read-side contention,
which can result in excessive scheduling latency.

• Scheduling latency can “bleed” over from
one reader to another in the case where
synchronize kernel() is waiting for one reader
to finish, and another reader is waiting for
synchronize kernel().

• There are a number of implementation de-
tails that cause various difficulties in the
CONFIG PREEMPT RT environment. These have
since been resolved [5].

2.13 Read-Side Grace-Period Sup-
pression

The initial difficulties with lock-based deferred free in
the CONFIG PREEMPT RT environment motivated Ingo
Molnar to make a small change to Classic RCU, based

1 void rcu_do_my_batch(void)
2 {
3 unsigned long flags;
4 struct rcu_data *rdp;
5 struct rcu_head *next, *list;
6
7 local_irq_save(flags);
8 rdp = &__get_cpu_var(rcu_data);
9 smp_mb();

10 if (rdp->batch != rcu_ctrlblk.batch) {
11 *rdp->donetail = rdp->waitlist;
12 rdp->donetail = rdp->waittail;
13 rdp->waitlist = NULL;
14 rdp->waittail = &rdp->waitlist;
15 rdp->batch = rcu_ctrlblk.batch;
16 }
17 list = rdp->donelist;
18 if (list != NULL) {
19 rdp->donelist = NULL;
20 rdp->donetail = &rdp->waitlist;
21 local_irq_restore(flags);
22 while (list) {
23 next = list->next;
24 list->func(list);
25 list = next;
26 }
27 } else {
28 local_irq_restore(flags);
29 }
30 }

Figure 11: LBDF, Exact Semantics (Callback Pro-
cessing)

on a suggestion by Esben Neilsen. This change sup-
presses a given CPU’s quiescent states for the dura-
tion of any RCU read-side critical sections that are
initiated on that CPU. This greatly reduces read-side
overhead, but can result in indefinite-duration grace
periods. Nonetheless, it suffices for experimentation,
and is currently part of the CONFIG PREEMPT RT en-
vironment.

2.14 Read-Side Counters With Flip-
ping

The K42 and Tornado implementations of an RCU-
like mechanism called “generations” use two sets of
counters to track RCU read-side critical sections.
A similar approach was used in some early Linux
patches implementing RCU. The idea is that one
counter of the pair is incremented any time a task
enters a RCU read-side critical section. When that
task exits its critical section, it decrements that same

12

counter. The roles of the counters in a pair can be
flipped, which allows a grace period to end a soon as
the other counter drops to zero, despite the possibil-
ity of subsequent entries into RCU read-side critical
sections.

Design of this approach is ongoing.

2.15 Discussion

The lock-based deferred-free approach has all of
the desireable properties called out in Section 2.1,
with the exception of a synchronization-free read
side. However, this read-side synchronization is light
weight, since only per-CPU locks are acquired, thus
avoiding the much of the cache-miss overhead that
normally comes with lock-based synchronization.

2.16 Summary of Realtime-Preempt
Approaches

Each of the previously discussed methods of permit-
ting RCU to scale in a realtime-preempt kernel has
its drawbacks, as shown in Table 2. Each column cor-
responds to one of the items in the list of desirable
RCU properties in Section 2.1, with the exception
of “deferred destruction”, which is met by all of the
proposed approaches. Blank cells are goodness, cells
with “n” are mild badness, with “N” are major bad-
ness, and with “X” are grounds for instant disquali-
fication. Note that the API change required for the
“Reader-Writer Locking” implementation is arguably
a good thing, since it tags RCU read-side critical sec-
tions with the corresponding write-side lock, which
can be a valuable documentation aid.

Although there is no perfect solution, at least not
yet, the lock-based deferred free approach and the
read-side counter-flipping approach should work well
for uniprocessor machines, and should scale to mod-
est SMP systems.

Nonetheless, it is also worthwhile to look into other
alternatives.

R
e
li
a
b
le

?

C
a
ll
a
b
le

F
ro

m
IR

Q
?

P
re

e
m

p
ti

b
le

R
e
a
d

S
id

e
?

S
m

a
ll

M
e
m

o
ry

F
o
o
tp

ri
n
t?

S
y
n
ch

ro
n
iz

a
ti

o
n
-F

re
e

R
e
a
d

S
id

e
?

In
d
e
p
e
n
d
e
n
t

o
f
M

e
m

o
ry

B
lo

ck
s?

F
re

e
ly

N
e
st

a
b
le

R
e
a
d

S
id

e
?

U
n
c
o
n
d
it

io
n
a
l
R

e
a
d
-t

o
-W

ri
te

U
p
g
ra

d
e
?

C
o
m

p
a
ti

b
le

A
P
I?

Classic RCU N N
Preemptible RCU X
Jim Houston Patch N N
Reader-Writer Locking N N N n
Unconditional Hazard Pointers X n N
Hazard Pointers: Failure n n N N
Hazard Pointers: Panic N n n N
Hazard Pointers: Blocking N n n N
Reference Counters N n N
rcu donereference() n N N
Lock-Based Deferred Free N
Read-Side GP Suppression N n
Read-Side Counters w/ Flipping n

Table 2: Comparison of Realtime-Preempt RCU Im-
plementations

13

3 Migration Approach

One such alternative is the migration approach,
where any task that is about to execute any operation
that does not have deterministic execution time is mi-
grated to some other CPU. Given the recent advent of
low-cost multithreaded and multicore CPUs, “some
other CPU” is becoming more commonly available.
Now, tasks that are executing in user mode may be
preempted at any time, and such tasks may therefore
be allowed to run at will. Interrupt handlers might
well acquire locks, and therefore interrupts should be
directed aways from CPUs that must provide real-
time service.

However, any time a process on such a realtime
CPU executes a system call, it will likely acquire a
lock in the kernel, thus incurring excessive latencies
if a non-realtime CPU holds that lock. This might
not be a problem for the process executing the sys-
tem call, after all, a synchronous write to a disk drive
involves considerable unavoidable latency. The prob-
lem is that other realtime processes running on the
same CPU would also see degraded realtime response
due to locks acquired while setting up the write.

This problem can be addressed by surprisingly
small changes:

1. Migrate realtime tasks that execute a system call
to a non-realtime CPU, and then back at the
completion of the system call.

2. Add checks to the scheduler’s load-balancing
code so that realtime CPUs do not attempt to
acquire other CPUs’ runqueue locks and vice
versa, except under carefully controlled condi-
tions.

With these changes, the code-path-length work that
currently must cover almost the entire kernel can fo-
cus on the system-call trap path (but not the sys-
tem calls themselves) and portions of the scheduler,
a much smaller body of code. This approach does
have some shortcomings: (1) realtime processes lose
their realtime characteristics within system calls, (2)
any page faults destroy the page-faulting process’s re-
altime characteristics, (3) unnecessary overhead is in-
curred migrating any deterministic system calls, and

(4) the interactions between realtime system-call mi-
gration and other types of migration have not been
thoroughly dealt with. In the short term, these can
be addressed by carefully coding the realtime applica-
tion, for example, by pinning the application’s pages
into memory.

Nonetheless, this approach promises to provide
many of the benefits of a realtime OS with minimal
modifications to the Linux kernel. In addition, this
approach permits the Linux kernel to be incremen-
tally moved to a deterministic realtime design on a
system-call-by-system-call and trap-by-trap basis, as
needed. It is quite possible that further improve-
ments to this approach will permit Linux to offer
hard-realtime response.

Figure 12 shows how the system-call path can be
set up to migrate any hard-realtime tasks. Additional
code is required to designate the hard-realtime CPUs
and tasks, but any of a number of approaches would
work here. The two rtoffload functions are quite sim-
ple, as shown in Figure 13. Of course, the current im-
plementation of sched migrate task() acquires the
runqueue lock, and therefore is not yet fully hard re-
altime.

Future work in this area includes engi-
neering deterministic mechanisms that allow
sched migrate task() to transfer tasks from one
CPU to another, so that a realtime CPU does not
suffer scheduler latency degradation due to spinning
on a lock held by a non-realtime CPU. It is possible
to apply this approach to single-CPU systems by
providing a thin Xen-like layer that makes it appear
to Linux that there are really two CPUs, but it is
not clear that this is worthwhile given the existence
of the realtime-preempt approach.

4 Conclusions

This paper studies a number of approaches to a scal-
able, performant, and aggressively realtime RCU im-
plementation, concluding that none of them fits the
bill. That said, this paper does not present a proof
that no such implementation is possible, and further-
more, any such implementation would be quite valu-
able, as it would get much wider workload coverage

14

1 @@ -303,6 +303,12 @@ static void do_syscall_trace(void)

2

3 void do_syscall_trace_enter(struct pt_regs *regs)

4 {

5 +

6 + /* The offload check must precede any non-realtime-safe code. */

7 +

8 + if (test_thread_flag(TIF_SYSCALL_RTOFFLOAD))

9 + do_syscall_rtoffload();

10 +

11 if (unlikely(current->audit_context))

12 audit_syscall_entry(current, regs->gpr[0],

13 regs->gpr[3], regs->gpr[4],

14 @@ -321,4 +327,9 @@ void do_syscall_trace_leave(void)

15 if (test_thread_flag(TIF_SYSCALL_TRACE)

16 && (current->ptrace & PT_PTRACED))

17 do_syscall_trace();

18 +

19 + /* The offload check must follow any non-realtime-safe code. */

20 +

21 + if (test_thread_flag(TIF_SYSCALL_RTOFFLOAD))

22 + do_syscall_rtoffload_return();

23 }

Figure 12: System-Call Migration

from a single configuration setting. Unfortunately,
the probability of such an implementation existing
seems to the authors to be quite low. The paper
therefore takes a brief look at a migration-based ap-
proach to attaining scalability, performance, and re-
altime response from a Linux kernel. Much work
is needed to implement and evaluate this migration-
based approach, as well as to continue the search for a
scalable realtime-preempt-safe RCU implementation.

Although this paper covers only one of the many
obstacles that must be overcome to extend Linux’s
realtime capabilities, it is clear that continued exten-
sion of these capabilities is inevitable. It is no longer
a question of whether Linux can take on challenging
realtime workloads, but rather a question of what,
how, and when.

Acknowledgements

We take a deep bow to Ingo Molnar for his imple-
mentation of an extremely preemptible Linux kernel.

Legal Statement

This work represents the view of the authors and does

not necessarily represent the view of IBM.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be

trademarks or service marks of others.

Copyright c© 2005 by IBM Corporation.

References

[1] Arcangeli, A., Cao, M., McKenney, P. E.,

and Sarma, D. Using read-copy update tech-

15

1 static void do_syscall_rtoffload(void)

2 {

3 sched_migrate_task(current, realtime_offload_cpu);

4 }

5

6 static void do_syscall_rtoffload_return(void)

7 {

8 sched_migrate_task(current, realtime_cpu);

9 }

Figure 13: Offload Functions

niques for System V IPC in the Linux 2.5 ker-
nel. In Proceedings of the 2003 USENIX Annual
Technical Conference (FREENIX Track) (June
2003), USENIX Association, pp. 297–310.

[2] Gamsa, B., Krieger, O., Appavoo, J., and

Stumm, M. Tornado: Maximizing locality and
concurrency in a shared memory multiprocessor
operating system. In Proceedings of the 3rd Sym-
posium on Operating System Design and Imple-
mentation (New Orleans, LA, February 1999),
pp. 87–100.

[3] Herlihy, M., Luchangco, V., and Moir,

M. The repeat offender problem: A mech-
anism for supporting dynamic-sized, lock-free
data structures. In Proceedings of 16th Inter-
national Symposium on Distributed Computing
(October 2002), pp. 339–353.

[4] Houston, J. [RFC&PATCH] Alterna-
tive RCU implementation. Available:
http://marc.theaimsgroup.com/?l=

linux-kernel&m=109387402400673&w=2

[Viewed February 17, 2005], August 2004.

[5] McKenney, P. E. [RFC] RCU and CON-
FIG PREEMPT RT progress. Available: http:
//lkml.org/lkml/2005/5/9/185 [Viewed May
13, 2005], May 2005.

[6] McKenney, P. E., Sarma, D., Arcan-

geli, A., Kleen, A., Krieger, O., and

Russell, R. Read-copy update. In Ottawa

Linux Symposium (June 2002), pp. 338–367.
Available: http://www.linux.org.uk/~ajh/

ols2002_proceedings.pdf.gz [Viewed June
23, 2004].

[7] Michael, M. M. Safe memory reclamation
for dynamic lock-free objects using atomic reads
and writes. In Proceedings of the 21st Annual
ACM Symposium on Principles of Distributed
Computing (August 2002), pp. 21–30.

[8] Molnar, I. Index of /mingo/realtime-
preempt. Available: http://people.redhat.

com/mingo/realtime-preempt/ [Viewed
February 15, 2005], February 2005.

[9] Morris, J. [PATCH 2/3] SELinux scal-
ability - convert AVC to RCU. Avail-
able: http://marc.theaimsgroup.com/

?l=linux-kernel&m=110054979416004&w=2

[Viewed December 10, 2004], November 2004.

[10] Sarma, D., and McKenney, P. E. Mak-
ing rcu safe for deep sub-millisecond response
realtime applications. In Proceedings of the
2004 USENIX Annual Technical Conference
(FREENIX Track) (June 2004), USENIX Asso-
ciation, pp. 182–191.

16

