
http://repo-ck.com/bench/cpu_schedulers_compared.pdf

CPU SCHEDULERS CPU SCHEDULERS
COMPARED
By graysky
20-Oct-2012

I d iIntroduction

P

2

Purpose
Benchmark details

/Test CPUs/systems

Purposep
3

Con Kolivas’ Brain Fuck Scheduler (bfs) was designed to provide superior
desktop interactivity and responsiveness to machines running it.1 However, itdesktop interactivity and responsiveness to machines running it. However, it
was not implicitly designed to provide superior performance. The purpose of
this study was to evaluate the Completely Fair Scheduler (cfs) in the vanilla
Linux kernel and the bfs in the corresponding kernel patched with the ck1
patchset. Seven (7) different machines were used to see if differences exist
and, to what degree they scale using performance based metrics. Again, these
end-points were never factors in the primary design goals of the bfs.

(1) http://ck.kolivas.org/patches/bfs/sched-BFS.txt

Benchmark Details

The collective benchmark was called from a simple Bash script that ran each

4

individual benchmark task multiple times – at least ten – in order to get a
decent number of observations to power a statistical comparison. Test
machines were booted into either the stock kernel or into a corresponding ck1
patched kernel and then challenged with three different benchmark tasks. The
time to complete each task was captured to a log file and the test repeated:

1. Compilation using gcc to `make -jx bzImage` for a preconfigured linux
2kernel v3.6.2.2

2. Compression using lrzip to compress the source tree for the linux kernel
v3.6.2.

3. Video compression using ffmpeg to transcode a 720p MPEG2 clip to a
360p video suitable for playback on a smartphone.

(2) In the `make jx bzImage` statement x=(number of physical cores + virtual cores)+1 I am aware that it is(2) In the make -jx bzImage statement, x=(number of physical cores + virtual cores)+1. I am aware that it is
recommended NOT to use the +1 for kernels running the bfs but felt that in order to fairly compare both
schedulers, this needed to be held constant.

CPUs Compared with Core Count

Athlon XP 3200+ =1 core

p
5

Athlon XP 3200+ 1 core

Intel E5200 =2 cores

Intel Atom 330 =4 cores

Intel i7-2620M =4 cores

Intel X3360 =4 cores

Intel i7-3770K =8 cores

Dual Intel E5620 =16 coresDual Intel E5620 =16 cores

= Physical core Each test machine ran Arch Linux x86 64 except= Physical core

= Hyperthreaded core

Each test machine ran Arch Linux x86_64 except
for the Athlon XP which ran Arch i686 due to its
lack of 64-bit support.

R l d C l iResults and Conclusion

C i B h k

6

Compression Benchmark
Make Benchmark
Video Encoding Benchmark
Conclusion

Compression Benchmark Resultsp
7

CPU Average Time (sec) CK Kernel is…

Vanilla CK-Patched Difference Result

AMD Athlon XP 558.3320 547.7577 -10.5753 1.9 % faster

Intel E5200 166.3141 165.7622 -0.5519 0.3 % faster

Intel Atom 330 470.0283 454.8185 -15.2098 3.2 % faster

Intel i7-2620M 81.2978 79.4898 -1.808 2.2 % faster Intel i7-2620M 9 %

Intel X3360 68.2635 67.7987 -0.4648 0.7 % faster

Intel i7-3770K 35.2904 34.3310 -0.9594 2.7 % faster

Dual Intel E5620 27.7919 28.2716 +0.4797 1.7 % slower

Small (1-3 %) efficiency/speed gains were observed almost universally across
th t t t h ti i i i l i Th t bl tithe test systems when timing compression using lrzip. The notable exception
being the multi-socket machine which was around 2 % slower.

Make Benchmark Results
8

CPU Average Time (sec) CK Kernel is…

Vanilla CK-Patched Difference Result

AMD Athlon XP 1,120.6486 1,095.6486 -25.4671 2.3 % faster

Intel E5200 374.0274 366.0912 -7.9362 2.1 % faster

Intel Atom 330 1,568.5016 1,546.4804 -22.0212 1.4 % faster

Intel i7-2620M 192.5477 190.6712 -1.8765 1.4 % fasterIntel i7-2620M 9 %

Intel X3360 127.6179 127.2340 -0.3839 0.3 % faster

Intel i7-3770K 68.9835 67.9671 -1.0164 1.5 % faster

Dual Intel E5620 74.1218 68.2665 -5.8553 7.9 % faster

Small to moderate (2-8 %) efficiency/speed gains were observed across all
t t t ith th b d d i t Of t i th lti k t “d ltest systems with the gcc-based endpoint. Of note is the multi-socket “dual
quad” machine which saw the largest boost using the bfs of nearly 8 %.

Video Benchmark Results
9

CPU Average Time (sec) CK Kernel is…

Vanilla CK-Patched Difference Result

AMD Athlon XP 380.8340 386.4206 +5.5866 1.5 % slower

Intel E5200 102.3183 99.8744 -2.4439 2.4 % faster

Intel Atom 330 471.0781 443.4450 -27.6331 5.9 % faster

Intel i7-2620M 50.1631 48.7489 -1.4142 2.8 % fasterIntel i7-2620M %

Intel X3360 39.3656 37.6724 -1.7232 4.4 % faster

Intel i7-3770K 19.6863 18.1044 -1.5819 8.0 % faster

Dual Intel E5620 30.9037 30.7141 -0.1896 0.6 % faster

Small to moderate (2-8 %) efficiency/speed gains were observed almost
i ll th t t t h ti i ff id di Huniversally across the test systems when timing ffmpeg video encoding. Here

the oldest CPU showed a slight decrease in speed of around 1.5 %.

Conclusion

In addition to the primary design goals of the bfs, increased desktop

10

interactivity and responsiveness, kernels patched with the ck1 patch set
including the bfs outperformed the vanilla kernel using the cfs at nearly all the
performance-based benchmarks tested. Further study with a larger test set
could be conducted, but based on the small test set of 7 PCs evaluated, these
increases in process queuing, efficiency/speed are, on the whole, independent
of CPU type (mono, dual, quad, hyperthreaded, etc.), CPU architecture (32-bit
and 64 bit) and of CPU multiplicity (mono or dual socket)and 64-bit), and of CPU multiplicity (mono or dual socket).

Moreover, several “modern” CPUs (Intel C2D and Ci7) that represent
common workstations and laptops, consistently outperformed the vanilla kernel

t ll b h k Effi i d d i ll t d tat all benchmarks. Efficiency and speed gains were small to moderate.

Feel free to contact the author with questions, suggestions, or rants: graysky
AT archlinux DOT us

A d /S I f

Li f f d

Appendix/Supporting Information11

List of software used
Additional hardware details
Statistical relevance of results and more details

Software Used

The requisite software packages used for each task came from the official

12

Arch Linux repos with the exception of the linux-ck packages which came from
the unofficial linux-ck repo.3 Package names including version numbers:

 linux-3.6.2-1

 linux-ck-3.6.2-1

 linux-ck uses bfs v0.425 contained in the 3.6-ck1 patchset.4

4 7 2 1 gcc-4.7.2-1

 ffmpeg-1:1.0-1

 lrzip-0.614-1p

Finally, the Oneway ANOVA plots presented in the Appendix were
generated using version 10.0 JMP.5

(3) https://wiki.archlinux.org/index.php/repo-ck
(4) http://ck.kolivas.org/patches/3.0/3.6/3.6-ck1/patch-3.6-ck1.bz2
(5) http://www.jmp.com

Software Used
13

The Bash script used to drive the benchmarks and to create the log file is
available in graysky’s github.6 Users may edit the initial variables in the script
to repeat this study on their own systems. The Linux source code can be
downloaded from http://kernel.org which will provide substrate for the
“Make” and for the “Compression” benchmarks. Due to copyright limitations, I
am unable to provide the 2 min 720p MPEG clip, but users seeking to run the
“Video” benchmark need only provide their own clip and edit the video clip
name variable in the script as a workaroundname variable in the script as a workaround.

The raw data generated during the course of this study and also presented
in the Oneway analyses on the slides to follow is available as a tab
d l i t d t t fil 7delaminated text file.7

(6) https://github.com/graysky2/bin
(7) http://repo-ck.com/bench/raw_data.txt

Additional Hardware Details
14

CPU Model Clock Speed (GHz) RAM (GB) Comment

AMD Athlon XP 3200+ 2.20 1.0

Intel E5200 3.33 4.0 Overclocked 12.5x266

Intel Atom 330 1.60 2.0

Intel i7-2620M 2 70 4 0Intel i7 2620M 2.70 4.0

Intel X3360 3.40 8.0 Overclocked 8.5x400

Intel i7-3770K 4.50 16.0 Overclocked 45x100

Dual Intel E5620 2.83 8.0 Dual socket machine

Note that the overclocked systems have been deemed “stable overclocks” though hours of punishment without
errors including torture testing with mprime, linpack, systester, and with gcc. For more on Linux stress testing,
see: https://wiki.archlinux.org/index.php/Stress_Test

Oneway Analysis
Athl XP/C iAthlon XP/Compression

15

Oneway Analysis
Athl XP/M kAthlon XP/Make

16

Oneway Analysis
Athl XP/VidAthlon XP/Video

17

Oneway Analysis
E5200/C iE5200/Compression

18

Oneway Analysis
E5200/M kE5200/Make

19

Oneway Analysis
E5200/VidE5200/Video

20

Oneway Analysis
At 330/C iAtom 330/Compression

21

Oneway Analysis
At 330/M kAtom 330/Make

22

Oneway Analysis
At 330/VidAtom 330/Video

23

Oneway Analysis
i7 2620M/C ii7-2620M/Compression

24

Oneway Analysis
i7 2620M/M ki7-2620M/Make

25

Oneway Analysis
i7 2620M/Vidi7-2620M/Video

26

Oneway Analysis
X3360/C iX3360/Compression

27

Oneway Analysis
X3360/M kX3360/Make

28

Oneway Analysis
X3360/VidX3360/Video

29

Oneway Analysis
i7 3370K/C ii7-3370K/Compression

30

Oneway Analysis
i7 3370K/M ki7-3370K/Make

31

Oneway Analysis
i7 3370K/Vidi7-3370K/Video

32

Oneway Analysis
D l E5620/C iDual E5620/Compression

33

Oneway Analysis
D l E5620/M kDual E5620/Make

34

Oneway Analysis
D l E5620/VidDual E5620/Video

35

