
Test of data transfer over an international network with a large RTT

J. Tanaka∗, M. Ishino, T. Mashimo,
H. Matsumoto, H. Sakamoto, I. Ueda,

International Center for Elementary Particle Physics (ICEPP),
the University of Tokyo, Tokyo 113-0033, Japan,

S.Y. Suzuki,
High Energy Accelerator Research Organization (KEK),

Tsukuba, Ibaraki 305-0801, Japan

Abstract

We have measured the performance of data transfer be-
tween CERN in Switzerland and ICEPP at the University of
Tokyo in Japan. A connection with 1 gigabits per second is
available between the two sites. The round trip time (RTT),
however, reaches about 270 msec. Moreover the connec-
tion is not dedicated to us. Due to the large latency and
other traffic on the same network, it is not easy to fully
exploit the available bandwidth. We report results of our
measurements and investigations.

INTRODUCTION

Motivation

International Center for Elementary Particle Physics,
ICEPP, will be one of the regional centers for analysis of
the data from the ATLAS experiment [1] which will start
data taking in 2007. A few petabytes of data are expected
to be generated from ATLAS each year. It is therefore es-
sential to achieve a high throughput of data transfer over
the long-distance network connection between CERN and
ICEPP.

Network Configuration

Figure 1 shows the configuration of our network con-
nection for this test. A bandwidth of 10 gigabits per second
(Gbps) is available in the backbone network [2] between
Europe and Japan. However, the bandwidth for our mea-
surements is currently limited to 1 Gbps both at CERN and
the University of Tokyo. At each site we set up a special
route to bypass the firewall.

TCP

The standard transport layer used on the Internet today
is the Transmission Control Protocol (TCP). Most of data
transfer applications are based on this protocol. However,
the original TCP was not designed for the network with a
high bandwidth such as 1 Gbps or more, or the wide area
network with a very large round trip time (RTT). As net-
works of high bandwidth-delay products become popular,

∗ Junichi.Tanaka@cern.ch

Figure 1: Network configuration: At CERN the so-called
High Throughput Access Route (HTAR) is used in order to
get around the firewall. The network path at ICEPP also
bypasses its firewall. Each PC is equipped with a gigabit
Ethernet NIC.

several options have been added to the TCP protocol. In
the measurements described in the following sections we
always turned on the window scale and the timestamp op-
tions to allow a larger window size and to protect against
wrapped sequences, respectively. In the standard Linux
kernel, the option of selective acknowledgment (SACK) is
also turned on for better detection of dropped segments [3].
The SACK option can contain up to 4 blocks of informa-
tion, but a maximum of 3 blocks can be accommodated in
the TCP header when the SACK option is used with the
timestamp option.

SETUP

For the measurements, the Linux PCs were installed at
CERN and ICEPP sites. Red Hat Linux 9 was used and its
kernel was replaced with the following ones:
(1) 2.4.25 with Scalable TCP (version 0.51) [4]
(2) 2.6.6-1.427 with its standard TCP stack.
In the following we will refer to the kernel and TCP stack
combination (1) as simply “2.4” and (2) as “2.6”.

We set and varied several parameters of kernels and net-
work interface cards (NIC) as follows.

[kernel]

net.ipv4.tcp_sack = 0 or 1

net.ipv4.tcp_rmem/tcp_wmem = 4096 65536 134217728



net.ipv4.tcp_mem = 134217728 134217728 134217728

net.core.rmem_default/wmem_default = 65535

net.core.rmem_max/wmem_max = 134217728

net.core.netdev_max_backlog = 3000

[NIC]

txqueuelen = 8000

On all the PCs the disk access speed exceeds 90 MB/s
for both reading and writing.

MEASUREMENT: MEMORY TO
MEMORY

We measured the performance of memory-to-memory
transfer using iperf [5]. We set the size of the TCP socket
buffer to 32 MB for both clients and servers. We transferred
data from CERN to ICEPP.

Effect of SACK

First we checked the effect of specifying the SACK op-
tion for the 2.6 case. Figure 2 shows a distribution of the
measured speed. On average the speed is 240 Mbps for
SACK=ON and 270 Mbps for SACK=OFF. There is no
improvement in the transfer speed by turning on the SACK
option. The results in the following sections were all ob-
tained with the SACK option turned off.

Figure 2: Distribution of the speed measured by iperf. We
measured the transfer speed several times. The distribution
is normalized to 1.

Effect of TCP Stack

We compared the transfer speed of 2.6 and 2.4. One of
the main differences between the standard TCP implemen-
tation and the Scalable TCP is the method of the recovery
of a TCP window size in the congestion avoidance phase.
As shown in Fig. 2, the Scalable TCP performs better than
the standard TCP stack (average ∼ 410 Mbps).

Comparison between Single and Multiple
Streams

We checked the effect of increasing number of simul-
taneous transfer sessions. The result is shown in Table 1.
In the case of 2.6, four parallel streams improves the ag-
gregate throughput. On the other hand, in the case of 2.4,
there is no improvement by varying the number of streams.
Table 2 shows the ratio of the throughput of the slowest
stream to the fastest stream. For both kernels, there is an
inequality of throughput among streams. It suggests that a
strong interaction exists between the streams.

To observe the variation of the TCP window size during
a transfer session, we built a tool to estimate the size of
the TCP window from the output of tcpdump [6]. Figure 3
explains the principle of the estimation. Figure 4 shows the
size of TCP window as a function of time for the 4 different
cases. We clearly see a slow-start phase and a congestion
avoidance phase in Figs. 4 (a) and (b). In Figs. 4 (c) and (d),
there are streams with small TCP window sizes. It indicates
that streams have large effects on each other. The streams
with small TCP windows are not contributing to the total
throughput effectively.

Table 1: Aggregate throughput measured by iperf

Setting Average (Mbps)
2.6 / 1 stream 270
2.6 / 4 streams 400
2.4 / 1 stream 410
2.4 / 4 streams 420

Table 2: Ratio of the throughput of the slowest stream to
the fastest stream

Setting Ratio
2.6 / 4 streams 0.25
2.4 / 4 streams 0.26

Figure 3: Estimation of a TCP window size: When a packet
is received at time C, we know that packets between B and
C are sent but their acknowledgments are not received yet
by the sender at time A. The total size of packets between
B and C corresponds to the TCP window size at time A.



(a) 2.4, 1 stream (b) 2.6, 1 stream

(c) 2.4, 4 streams (d) 2.6, 4 streams

Figure 4: TCP window size (in bytes) as a function of time (sec) for each stream

MEASUREMENT: DISK TO DISK

To evaluate the network performance in realistic cases
we measured data transfer speed from disk to disk by us-
ing bbftp [7]. We transferred 15 or more files from CERN
to ICEPP. The size of each file is about 2 GB. We mea-
sured the transfer speed for various numbers of the parallel
streams (1, 2 or 4), different kernels (2.4 or 2.6) and differ-
ent sizes of TCP socket buffer (8, 16 or 32 MB). The results
of the averaged transfer speed are shown in Table 3. For the
case of 2 or 4 parallel streams the aggregate throughput is
shown. In most cases the total throughput is worse than the
throughput for the single stream case, in contradiction to a
naive expectation. It may be due to the behavior of the TCP
window size described in the previous section. In the case
of a single stream, the transfer speed generally improves as
the TCP socket buffer becomes larger. The Scalable TCP
performs better than the standard TCP stack.

Table 3: Average of data transfer speed (MB/s) by bbftp

2.4 8MB 16MB 32MB
1 stream 20.0 26.4 27.8
2 streams 24.4 20.8 -
4 streams 19.0 19.3 -
2.6
1 stream 9.6 10.5 10.3
2 streams 6.8 6.9 -
4 streams 7.3 7.3 -

We also measured the transfer speed for the two config-
urations shown in Fig. 5. In one case two clients send files

to the same server. In the other case each client sends files
to a different server. In the former case (“same destina-
tion”), the condition for the server is the same as 2 parallel
streams. In the latter case (“different destination”), there
are two independent network connections. Table 4 shows
the results for these two configurations with 32 MB TCP
socket buffer. In the case of 2.4, the method of the “differ-
ent destination” gives the best result. However the result
of 39.2 MB/s is not close to 55.6 MB/s expected from the
performance of a single connection. In the case of 2.6, the
results are better than the single connection by a factor of
∼2. The performance is, however, worse than the 2.4 case
in both configurations.

Figure 5: Configuration of servers and clients

Table 4: Average of data transfer speed (MB/s) by bbftp

2.4 2.6
Same destination 33.0 19.2
Different destination 39.2 18.2
1 stream 27.8 10.3



CONCLUSION AND FUTURE PLAN

We have measured performance of the network between
CERN and ICEPP. For this non-dedicated network connec-
tion (1 Gbps) with a large RTT (270 msec) the results are
summarized as follows:

(1) The network performance is not improved by the
SACK option.

(2) The Scalable TCP performs better than the standard
Linux TCP stack.

(3) With a single PC at each end, use of multiple streams
for disk to disk transfer results in poorer performance
in the aggregate throughput compared with a single
stream.

(4) The total throughput of two independent disk-to-disk
transfers using two PCs at each end is better than the
two transfers using one common PC at one end.

From these results, we have a plan to develop a file trans-
fer program based on the scheme shown in Fig. 6. The data
transfer proceeds as follows:

(1) A file to be sent is divided into multiple portions and
they are transferred by multiple PCs.

(2) One PC at one end of the network and another PC
at the other end are dedicated to a single connection.
Multiple pairs of PCs transfer data in parallel and a
copy of the file is assembled at the other end.

(3) When the transfer speed of a connection becomes
slower than a given value, the connection is stopped,
the information such as slow-start threshold and con-
gestion window is flushed, and a new connection is
started to continue the transfer.

Figure 6: Schematic view of the file transfer method to be
studied in the future

ACKNOWLEDGMENTS

We would like to thank P. Moroni (CERN) and
Y. Karita (KEK) for their help on establishing the network
connection for this measurement by arranging a HTAR
route at CERN. We are also very grateful to the network
management team of CERN for their help in our bandwidth
measurements. We express our thanks to National Institute
for Informatics (NII) for providing stable operation of Su-
perSINET.

REFERENCES

[1] “ATLAS Computing Technical Proposal”, ATLAS Collabo-
ration, CERN/LHCC 96-43, 1996.

[2] National Institute for Informatics (NII) provides international
network connections for academic use as well as a 10 Gbps
backbone for the Japanese national academic network. There
are currently 4 lines of 2.5 Gbps speed between Tokyo and
New York, where the lines are directly connected to the Eu-
ropean academic network (GEANT).

[3] RFC2018 (http://www.rfc-editor.org/rfc/rfc2018.txt) and
RFC2883 (http://www.rfc-editor.org/rfc/rfc2883.txt)

[4] http://www-lce.eng.cam.ac.uk/ ctk21/scalable/.
We extracted the code of the Scalable TCP version 0.51 from
the version 2.4.19 of the Linux kernel and then applied it to
the 2.4.25 kernel.

[5] http://dast.nlanr.net/Projects/Iperf/

[6] The version 3.8.3 of tcpdump (http://www.tcpdump.org/) and
the version 0.8.3 of libpcap are used for building our tool.

[7] http://doc.in2p3.fr/bbftp/


