

Status of Linux dynticks

Frederic Weisbecker <fweisbec@gmail.com>

What is the tick?

What is the tick?

● A periodic interrupt

What is the tick?

● A periodic interrupt

● Frequency depends on arch and hardware

x86: 100 Hz, 250 Hz, 1000 Hz

What is the tick?

● Low frequency (100 Hz): throughput, less interrupts, CPU
less stolen, less cache trashed, ...

● High frequency (1000 Hz): latency, timer and scheduler
granularity, cputime precision

● Hrtimer reduce low freq drawback (poll(), epoll(), ...)

What is the tick?

● Timekeeping (walltime, xtime, gettimeofday())

● Jiffies: relative, internal clock

● timer wheel: struct timer_list

What is the tick?

● Posix CPU timers (itimer, timer_settime,
RLIM_CPU, ...)

● Cputime

● Scheduler (local and global fairness,
bandwidth, load/time accounting...)

● RCU

Is it free?

Is it free?

Copyright © 2013 Melissa Broussard, CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/us/)

Is it free?
● Dynticks idle merged in 2.6.21 (2007)

Is it free?
● Dynticks idle merged in 2.6.21 (2007)

● Dynticks != Tick-free

● Fix power issue side of the tick

● CPU can enter deep C-states

● So now it's free, right?

Is it free?

● So now it's free, right? No!

● Tick steals CPU 100 to 1000 times per secs

● Icache, dcache periodically trashed

Is it free?

Is it free?

● Who complains?

● HPC: extreme throughput

● Real time: extreme latency

Is it free?

Is it free?
● Need to stop tick even on busy CPUs

● Full dynticks merged in 3.10

● But to stop the tick comes at various costs and
requirements

● Poll driven -> Event driven

Cputime accounting

● Poll on task execution

● Account tick to interrupted ring:
– Userspace (task->utime)

– Kernelspace (task->stime)

– Fine grained details (guest, hardirq, softirq, ...)

● CONFIG_TICK_CPU_ACCOUNTING

Full dynticks: Cputime accounting

● Convert to event driven accounting

● Listen to ring boundaries, account delta:
– Syscall entry/exit

– Exception entry/exit (traps, faults, ...)

– Irqs entry/exit

Full dynticks: Cputime accounting

● Convert to event driven accounting

● Listen to ring boundaries, account delta:
– Syscall entry/exit

– Exception entry/exit (traps, faults, ...)

– Irqs entry/exit

● Hooks overhead

RCU

● Kernel lockless synchronization

● Read sides can run concurrently with the
writer

● Synchronize object lifecycles

RCU

READ SIDE

rcu_read_lock()

p = rcu_dereference(rcu_object)

if (p != NULL)

do_something_with(p)

 rcu_read_unlock()

RCU

WRITE SIDE

p = rcu_object

rcu_assign_pointer(rcu_object, new_object)

synchronize_rcu()

kfree(p)

RCU

1) Writer updates the object pointer

=> rcu_assign_pointer()

2) Starts grace period (finish when no more
reader is using or can access old value)

=> synchronize_rcu(), call_rcu(...)

3) Guarantee old value not visible anymore:
remove old object

RCU

● Quiescent state = CPU not using RCU

● All CPU report a quiescent state: grace period
end.

● Grace period => global state machine, all CPU
participate

● Poll on quiescent states through tick

RCU

● Extended quiescent state = CPU not using
RCU and no polling on quiescent states

● Passive part of global state machine, no
quiescent state request (ie: no need for tick)

● Useful for dynticks

● Idle = extended quiescent state, to enforce
powersaving

Full dynticks: RCU

● Userspace don't use RCU

● Userspace = extended quiescent
(CONFIG_RCU_USER_QS)

● Dynticks possible in userspace

Full dynticks: Timekeeping

● Tickless busy CPU can use jiffies/walltime

● Unlike dyntick idle, need maintained
timekeeping

● Need a periodic timekeeper (boot CPU)

● Big powersaving issue right now (solution from
Paul Mckenney in the way)

Full dynticks: single task

● Need local fairness if more than a task runs

(preemption)

● Only stop tick if single task on CPU

● Future: hrtick ?

Full dynticks: 1 Hz hack

● Still some work needed on scheduler

● Load balancing, various accounting stats,

load average, etc...

● Keep 1 Hz at most until it gets solved

References
● Documentation/timers/NO_HZ.txt

● (Nearly) full tickless operation in 3.10
– http://lwn.net/Articles/549580/

● “The 2012 realtime minisummit” (LWN, CPU isolation discussion)
– http://lwn.net/Articles/520704/

● “NoHZ tasks” (LWN)
– http://lwn.net/Articles/420544/

● Linux kernel development, Robert Love

● Bare metal multicore performance in a general purpose Operating
System, Paul McKenney

http://lwn.net/Articles/420544/

Thanks!
● Josh Triplett: First prototype (LPC 2009)

● Steven Rostedt: Lots of code review and comments, tracing upgrades

● Christoph Lameter: Early adopter feedback

● Li Zhong: Power port

● Geoff Levand, Kevin Hilman: ARM port

● Peter Zijlstra: Scheduler-related review, comments, and work

● Paul E. McKenney: Read-copy update (RCU) work (fun with “Hotel California” interrupts!)

● Thomas Gleixner, Paul E. McKenney: “Godfathers”

● Ingo Molnar: Maintainer

● Other contributors:

– Avi Kivity, Chris Metcalf, Geoff Levand, Gilad Ben Yossef, Hakan Akkan, Lai Jiangshan, Max Krasnyansky,
Namhyung Kim, Paul Gortmaker, Paul Mackerras, Peter Zijlstra, Steven Rostedt, Zen Lin (and probably
many more)

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

