
Real-Time Preemption Patch-
Set

Manas Saksena
TimeSys

Real-Time Preemption Patch-Set

Development done by Ingo Molnar
Patches Available at:

http://people.redhat.com/mingo/realtime-preempt/
LKML archives

Historical Perspective:
TimeSys 2.4 Kernels implemented most of these
features
Scott Wood developed patches (posted to LKML) for IRQ
& SoftIRQ Threading that were part of CELF 1.0
specification

TimeSys 2.4 Linux

2.4 Preempt Linux

Real-Time Unix

Desktop OSCommercial Unix

Widely-Used RTOS

True RTOS Performance in Linux?

Real-Time Preemption PatchSet

Goal:
Make Fixed priority preemptive scheduling (i.e., POSIX
SCHED_FIFO and SCHED_RR classes) as close as
possible to their ideal behavior

Tactics:
Execute all activities in “schedulable/thread” context
Make the system preemptible as much as possible

Other Goals:
No impact on users not interested in real-time
Support for degrees of real-time behaviors (Latency vs
Throughput tradeoff)

Linux Tasking & Scheduling
Architecture (2.6 kernel)

Device Driver
Interrupt handler

Soft IRQ Queue

P1Application Level
Preemptive Scheduling

P2 P3
User Process

or Thread

Task Scheduler
Task Queue

P4Kernel Thread

Kernel Level
Preemptive Scheduling

Non-Preemptible Critical Sections

Linux Scheduling Architecture

Interrupt Handler
Processing

Soft IRQ
Processing

(POSIX) Real-Time
Tasks

Time-Sharing
Tasks

Low Priority

High Priority

Scheduled
by Task
Scheduler

Non
Schedulable
Processing Hard-IRQ

context

Soft-IRQ
context

Process or
Thread
Context

Wakeup Latency

Device Driver
Interrupt handler

Soft-IRQ Handler

Virtual File System Layer (vfs) P1

open close read write ioctl

wakeup task

Interrupt Latency

Interrupt VectoringInterrupt VectoringInterrupt Vectoring

Hardware DelayHardware DelayHardware Delay

Interrupt HandlerInterrupt HandlerInterrupt Handler

Interrupts MaskedInterrupts MaskedInterrupts Masked

do_IRQ()do_IRQdo_IRQ()()

handle_IRQ_Event()handle_IRQ_Eventhandle_IRQ_Event()()

Nested Interrupts can cause
additional delays here

execution path
priority inversion

WakeUp Latency

Pending
SoftIRQ Processing

Pending Pending
SoftIRQSoftIRQ ProcessingProcessing

Interrupt LatencyInterrupt LatencyInterrupt Latency

Interrupt Handler
(wake up task)

Interrupt HandlerInterrupt Handler
(wake up task)(wake up task)

Non-Preemptible Code
Section

NonNon--PreemptiblePreemptible CodeCode
SectionSection Non-preemptible kernel or

Critical Sections

Scheduler
(context-switch)

SchedulerScheduler
(context(context--switch)switch)

TaskTaskTask

execution path
priority inversion

OS defined higher priority
work – may not match
with application’s needs

Summary of Issues

Non-Prioritized Activities
Interrupt Handling

SoftIRQ Handling

Non-Preemptible Code Sections
All Critical Sections (protected by spin locks) in the
kernel

Special Big Kernel Lock protected critical sections

Prioritized/Threaded Interrupt Handling

+config PREEMPT_HARDIRQS
+ bool "Thread Hardirqs"
+ default n
+# depends on PREEMPT
+ help
+ This option reduces the latency of the kernel by 'threading'
+ hardirqs. This means that all (or selected) hardirqs will run
+ in their own kernel thread context. While this helps latency,
+ this feature can also reduce performance.
+
+ The threading of hardirqs can also be controlled via the
+ /proc/sys/kernel/hardirq_preemption runtime flag and the
+ hardirq-preempt=0/1 boot-time option. Per-irq threading can
+ be enabled/disable via the /proc/irq/<IRQ>/<handler>/threaded
+ runtime flags.
+
+ Say N if you are unsure.

Threaded SoftIRQ Handling

+config PREEMPT_SOFTIRQS
+ bool "Thread Softirqs"
+ default n
+# depends on PREEMPT
+ help
+ This option reduces the latency of the kernel by 'threading'
+ soft interrupts. This means that all softirqs will execute
+ in softirqd's context. While this helps latency, it can also
+ reduce performance.
+
+ The threading of softirqs can also be controlled via
+ /proc/sys/kernel/softirq_preemption runtime flag and the
+ sofirq-preempt=0/1 boot-time option.
+
+ Say N if you are unsure.

Summary of Issues

Non-Prioritized Activities
Interrupt Handling

SoftIRQ Handling

Non-Preemptible Code Sections
All Critical Sections (protected by spin locks) in the
kernel

Special Big Kernel Lock protected critical sections

Kernel Preemptibility Options

No Preemption
Non Preemptible Kernel

Voluntary Preemption
Non Preemptible Kernel; Voluntary Preemption

Preemptible Kernel
Preemptible Kernel, but non preemptible critical
sections

Real-Time Preemptible Kernel
Fully Preemptible Kernel

No Preemption

+config PREEMPT_NONE
+bool "No Forced Preemption (Server)"
+help
+ This is the traditional Linux preemption model geared towards
+ throughput. It will still provide good latencies most of the
+ time but there are no guarantees and occasional long delays
+ are possible.
+
+ Select this option if you are building a kernel for a server or
+ scientific/computation system, or if you want to maximize the
+ raw processing power of the kernel, irrespective of scheduling
+ latencies.

Voluntary Preemption

+config PREEMPT_VOLUNTARY
+bool "Voluntary Kernel Preemption (Desktop)"
+help
+ This option reduces the latency of the kernel by adding more
+ "explicit preemption points" to the kernel code. These new
+ preemption points have been selected to minimize the

maximum
+ latency of rescheduling, providing faster application reactions,
+ at the cost of slighly lower throughput.
+
+ This allows reaction to interactive events by allowing a
+ low priority process to voluntarily preempt itself even if it
+ is in kernel mode executing a system call. This allows
+ applications to run more 'smoothly' even when the system is
+ under load.

Voluntary Preemption

Basic Idea
Introduce preemption points on long kernel paths
Useful for getting low latencies when not using
preemptible kernels

Voluntary Preempt in RT Patchset
Reuse existing (but inactive) scheduling points in the
kernel
Introduce additional preemption points through
instrumentation

Use lock-breaking to break long critical sections

Preempt Desktop

+config PREEMPT_DESKTOP
+ bool "Preemptible Kernel (Low-Latency Desktop)"
+ help
+ This option reduces the latency of the kernel by making
+ all kernel code that is not executing in a critical section
+ preemptible. This allows reaction to interactive events by
+ permitting a low priority process to be preempted involuntarily
+ even if it is in kernel mode executing a system call and would
+ otherwise not about to reach a preemption point. This allows
+ applications to run more 'smoothly' even when the system is
+ under load, at the cost of slighly lower throughput and a
+ slight runtime overhead to kernel code.
+
+ (According to profiles, when this mode is selected then even
+ during kernel-intense workloads the system is in an immediately
+ preemptible state more than 50% of the time.)

Real-Time Preemption

+config PREEMPT_RT
+ bool "Complete Preemption (Real-Time)"
+ select PREEMPT_SOFTIRQS
+ select PREEMPT_HARDIRQS
+ help
+ This option further reduces the scheduling latency of the
+ kernel by replacing almost every spinlock used by the kernel
+ with preemptible mutexes and thus making all but the most
+ critical kernel code involuntarily preemptible. The remaining
+ handful of lowlevel non-preemptible codepaths are short and
+ have a deterministic latency of a couple of tens of
+ microseconds (depending the the hardware). This also allows
+ applications to run more 'smoothly' even when the system is
+ under load, at the cost of lower throughput and runtime
+ overhead to kernel code.

Preemptible Kernels:
Two Approaches to Protecting Critical Sections

PREEMPT-LOCK:
Disable preemption during critical sections
PREEMPT_DESKTOP does this
Kernel is preemptible everywhere except when inside a
critical section
Optionally enable IRQ/SoftIRQ Threading
Optionally enable Voluntary Preemption

MUTEX-LOCK:
PREMPT_RT does this
Kernel is preemptible inside (most) critical sections

Still need some small non-preemptible critical sections
Needs IRQ/SoftIRQ Threading

BKL Preemption

+config PREEMPT_BKL
+ bool "Preempt The Big Kernel Lock"
+ depends on PREEMPT || SMP
+ default y
+ help
+ This option reduces the latency of the kernel

by making the big kernel lock preemptible.
+
+ Say Y here if you are building a kernel for a desktop

system.
+ Say N if you are unsure.

Interrupt Latency with RT PREEMPT

Interrupt VectoringInterrupt VectoringInterrupt Vectoring

Hardware DelayHardware DelayHardware Delay

Interrupt HandlerInterrupt HandlerInterrupt Handler

Interrupts MaskedInterrupts MaskedInterrupts Masked

do_IRQ()do_IRQdo_IRQ()()

handle_IRQ_Event()handle_IRQ_Eventhandle_IRQ_Event()()

execution path
priority inversion

Reduced Interrupt Masking
Time
Reduced Interrupt Masking
Time

Nested Interrupts can cause
additional delays here

Wakeup Latency with RT PREEMPT

Pending
SoftIRQ Processing

Pending Pending
SoftIRQSoftIRQ ProcessingProcessing

Interrupt LatencyInterrupt LatencyInterrupt Latency

Interrupt Handler
(wake up task)

Interrupt HandlerInterrupt Handler
(wake up task)(wake up task)

Non-Preemptible
Code Sections

NonNon--PreemptiblePreemptible
Code SectionsCode Sections Non-preemptible kernel or

Critica Sections

Scheduler
(context-switch)

SchedulerScheduler
(context(context--switch)switch)

TaskTaskTask

execution path
priority inversion

OS defined higher priority
work – may not match
with application’s needs

