
Efficient and Adaptive Proportional Share I/O Scheduling

Abstract

In most data centers, terabytes of storage are commonly
shared among tens to hundreds of hosts for universal ac-
cess and economies of scaling. Despite much prior re-
search, most storage arrays do not provide useful mech-
anisms to provide Quality of service (QoS) guarantees to
applications. Storage administrators are often forced to
isolate workloads using expensive storage provisioing.
We believe that lack of adoption of QoS mechanisms is
mainly due to the low I/O efficiencies that result from
the various proposed QoS techniques. This motivates
the need for more flexible QoS mechanisms since the
efficiency of I/O devices depends crucially on the order
in which the requests are served. In this paper, we at-
tempt to alleviate the I/O efficiency concerns of propor-
tional share schedulers. We first provide a framework
to study the inherent trade-off between fairness and I/O
efficiency. We propose two main parameters -degree
of concurrencyandbatch sizeas control knobs. We find
that significantlyhigher I/O efficiencycan be achieved
by slightly relaxing short-term fairnessguarantees. We
then present a self-tuning algorithm that achieves good
efficiency while still providing fairness guarantees. The
algorithm doesn’t require any workload-specific param-
eters to operate. Experimental results indicate that an
I/O efficiency of over 90% is achievable by allowing the
scheduler to deviate from proportional service for a few
seconds at a time.

1 Introduction
Increasing cost pressures on IT environments have been
fueling a recent trend towards storage consolidation,
where multiple applications share storage systems to
improve utilization, cost, and operational efficiency.
The primary motivation behind storage QoS research
has been to alleviate problems that arise due to shar-
ing, such as handling diverse application I/O require-
ments and changing workload demands and character-
istics. For example, the performance of interactive or
time-critical workloads such as media serving and trans-
action processing should not be hurt by I/O intensive
workloads or background jobs such as online analyt-
ics, file serving or virus scanning. Despite much prior
research [3, 16, 17, 19], QoS mechanisms do not enjoy
widespread deployment in today’s storage systems. We
believe this is primarily due to the low I/O efficiencies
of the existing QoS mechanisms.

Fairness and I/O efficiency are known to be quite diffi-
cult to optimize simultaneously for multiple applications
sharing I/O resources. Disk schedulers usually attempt
to maximize overall throughput by reducing mechanical
delays while serving I/O requests. The individual ap-
plication (or process) making the I/O request is usually
not considered in the scheduling decisions. The conven-
tional belief is that maximizing the overall throughput
is good for all applications accessing the storage sys-
tem, and providing fairness can substantially reduce the
overall throughput. In contrast, other resources in a sys-
tem such as CPU, memory, and network bandwidth can
be multiplexed based on per-process behavior by using
well known fairness algorithms [2, 5, 7, 18, 20]. We be-
lieve that the existing QoS mechanisms proposed so far
have not adequately addressed the problem of losing I/O
efficiency due to proportional sharing. The main issue at
hand is to find the right balance between the two oppos-
ing forces of proportional share guarantees and IO effi-
ciency. A QoS mechanism for storage systems should
have the following properties:

• Fairness guarantees: to provide proportional
share fairness to different applications.
• I/O efficiency: to achieve high I/O efficiency com-

parable to workloads running in isolation.
• Control knobs: to provide the ability to control the

inherent trade-off between the I/O efficiency and
the proportional share guarantees.
• Work conservation: storage system is not kept

idle when there are pending requests.

In this paper, we first provide a framework to sys-
tematically study the trade-off between fairness and ef-
ficiency and propose simple mechanisms to adaptively
tune the system to find a balanced operation point. We
find that I/O efficiency can be improved if we relax the
fairness granularity, the minimum time interval over
which the QoS mechanisms guarantee fairness in pro-
portional shares of the contending applications. This
is significant as it indicates that it may be possible to
improve the I/O efficiency without greatly affecting the
QoS guarantees.

While the tension between fairness and efficiency is
well known, our second main contribution lies in pro-
viding a novel online, adaptive mechanism to improve
the I/O efficiency of proportional share schedulers. We
propose two control mechanisms to achieve these prop-
erties:variable size batchingandbounded concurrency.

A batch is a set of requests from an application that are
issued consecutively without intervention from other ap-
plications. Concurrency refers to the number of requests
outstanding at the device at any given time. The first
mechanism allows each application to choose a batch
size appropriate to its access characteristics. This is use-
ful for workloads that exhibit spatial locality as it re-
duces the delays due to excessive disk seeks. The sec-
ond mechanism allows the fair-share scheduler to keep a
sufficient number of pending requests (i,e, level of con-
currency) at the device, so that existing seek-optimizing
schedulers can provide higher throughput. However, the
concurrency needs to be bounded if the fairness guaran-
tees are to be honored. We show that these two mech-
anisms are effective in improving I/O efficiency while
only slightly increasing the fairness granularity for the
QoS guarantees. We also develop an algorithm that
adapts the settings of these two parameters based on the
workload characteristics. This is useful as it allows us to
keep the I/O efficiency high in the presence of dynam-
ically changing workloads without impacting the QoS
guarantees (i.e., the fairness granularity). Our analysis
shows that in worst case, the fairness granularity is a lin-
ear function of these two parameters. Previous work by
Jinet al.(SFQ(D) [12]) has only addressed the impact of
the concurrency parameter on fairness.

In the remainder of this paper, we first discuss the
prior work in section 2 and describe our system model
in section 3. Then, we describe our mechanisms to trade
off between I/O efficiency and the fairness granularity in
section 4, and develop analytical bounds for the fairness
granularity in section 5. We evaluate our approach in
section 6 and then conclude.

2 Related Work
Providing QoS support has been an active area of re-
search in systems and many proposed mechanisms in the
networking domain have found their way into deploy-
ments. For example, (WFQ [5],WF2Q [2], SFQ [6,8,9],
DRR [18]) have been adopted for traffic shaping and
providing fairness for network link bandwidth. Some
variants of these algorithms have also been proposed for
storage systems. Existing approaches forQoS in stor-
agecan be classified into three main categories: (1) Fair
queuing based scheduling algorithms, (2) time slicing at
the device, and (3) control theoretic approaches.

Fair queuing based techniques use variants of
the WFQ algorithm [5] to provide QoS. YFQ [3],
SFQ(D) [12], Avatar [23], and Cello [17] use virtual
time based tagging to select IOs and then use a seek op-
timizer to schedule the chosen requests. Some of these
techniques have proposed using high concurrency at the
storage server for higher throughput. However, none
of them have studied the impact of such optimizations

on fairness. Stonehenge [11] and SCAN-EDF [16] also
consider both seek times and request deadlines. Other
approaches such aspClock [10] do burst handling and
provide fair scheduling to handle both latency deadlines
and bandwidth allocation. A fundamental limitation of
existing techniques is that they focus mainly on fairness
and do not evaluate the trade-off between fairness and
I/O efficiency. Our work extends one such algorithm to
support a balance between fairness and efficiency.

Among the scheduling-based techniques, Zygaria
[21] and AQuA [22] use hierarchical token buckets to
support QoS guarantees for distributed storage systems.
Zygaria supports throughput reserves and throughput
caps while preserving I/O efficiency, but it neither pro-
vides mechanisms for trading fairness with efficiency
nor adapts scheduling based on the workload. Simi-
larly, the ODIS scheduler in AQuA employs a “band-
width maximizer” that attempts to increase aggregate
throughput as long as the QoS assurances are not vio-
lated. While ODIS employs a throttling-based heuris-
tic algorithm that adjusts the token rate based on overall
disk utilization, it does not consider individual workload
characteristics. In cases where the system is over-loaded
and not all QoS requirements can be met, there is no
guarantee of proportional service. No special effort is
made to maintain the efficiency of sequential and spa-
tially local workloads. By contrast, our framework guar-
antees that, when workloads are backlogged, the service
will be allocated proportionately between the workloads
based on their weights; this guarantee is proven theoret-
ically and demonstrated experimentally. In addition, our
mechanism enables high I/O efficiency for spatially lo-
cal workloads by trading off fairness granularity - i.e.,
by allowing brief deviations from proportional service.

Other techniques such as Fahrrad [15] and Argon [19]
are based on IO time multiplexing at the disk. This has
the advantage of preserving the IO access patterns of an
application and avoiding interference with other work-
loads. Fahrrad [15] tries to provide real time guarantees
for disk time utilization. Reserving disk time allows one
to charge based on IO workload, which can be quite use-
ful in some cases. In most storage systems the concur-
rency of multiple IOs pending at the same time, makes
it very difficult to estimate per IO completion time. In
Argon [19], each application is assigned a time quan-
tum dedicated to its IO requests. One issue with this
approach is the potential for increased latency. IO re-
quests from an application that miss the application’s
timeslice (either because they did not complete during
the timeslice, or arrived after it ended) must wait until
the next timeslice to receive service. The worst case la-
tency bounds increase with the number of applications
and the duration of the time quantum. Secondly, dur-
ing a timeslice the server sees only the requests from the

single application scheduled in that interval. While this
improves the efficiency of serving sequential requests,
it decreases the effectiveness of the seek optimizer for
random requests, because it does not take all the pend-
ing requests into consideration.

Control theoretic approaches such as Triage [13] and
Sleds [4] use client throttling as a mechanism to ensure
fair sharing among clients and may lead to lower uti-
lization. Façade [14] tries to provide latency guarantees
to applications by controlling the length of disk queues.
This can lead to lower overall efficiency and the trade-
off between the loss of efficiency and latency is not ex-
plored.

3 System Model

Our system consists of a storage server that is shared
between a number of applications. Each application
has an associatedweight. The goal of the proportional
share (fair) scheduler is to provide active applications
I/O throughput in proportion to their associated weights,
while maintaining high efficiency. Thefair scheduler
is logically interposed between the applications and the
storage server. In an actual implementation, it could re-
side in the storage server, in a network switch, in a sep-
arate “shim” appliance [12], or in a device driver stack.
The fair scheduler maintains a set of input queues, one
for each application, and an output queue. Requests are
scheduled from the input queues to the output queue and
then they are scheduled on to underlying devices based
on some seek optimizing criterion. Similar two level ar-
chitectures have also been proposed in earlier works (see
Section 2, where the first level does fair scheduling and
the second level does seek optimization.

n Apps
Fair

scheduler
Server

Seek
optimizer

Q2

Q1

Qn

Qd

Figure 1: System Model

Notation: The number of applications is denoted as
N. Theith application isai ; its weight iswi , and its queue
in the fair scheduler isQi . D is the number of outstand-
ing scheduled requests -i.e., the number of requests in
the scheduler output queue plus those outstanding at the
storage server. These and other notations we use are
summarized in Table 1 for convenient reference.

3.1 Metric Definitions

The objective of our system is to provide throughput
to applications in proportion to their weights, while
maintaining high overall system throughput. The per-

SYMBOLS DESCRIPTION

N number of applications
ai the ith application
wi weight of applicationai

Qi fair scheduler queue forai

Gi batch size for applicationai

D number of outstanding scheduled
requests

ni(t1,t2) throughput for applicationai , alone
r i(t1,t2) throughput for applicationai , shared
E (t1,t2) efficiency of the scheduler
F (t1,t2) fairness of the scheduler

Table 1:Notation used in this paper. The last four metrics
are defined over a time interval(t1,t2). For notational conve-
nience we omit(t1,t2), since the time interval is implicit.

formance of a storage server depends critically upon
the order in which the requests are served. For exam-
ple, it is substantially more efficient to serve sequen-
tial I/Os together. This is unlike other domains, such
as networking, where the order in which packets are
dispatched does not affect the overall throughput of a
switch. For this reason, it is important to measure the
overall throughput (efficiency), in addition to a fairness
criterion. Efficiency denotes the ratio of the actual sys-
tem throughput to that attained when the applications are
run without interference. Fairness refers to how well the
application throughputs match their assigned weights.

We first define an efficiency measure that captures
the slowdown due to scheduling the mix of requests
rather than running them in isolation. To motivate the
definition, consider two applicationsa1 and a2 which
have isolated throughputs ofn1 = 100 andn2 = 200
(requests/sec) respectively. Suppose that when run to-
gether using a fair scheduler, 25 requests ofa1 and 40
requests ofa2 were completed in an interval ofTs = 1
second. Now, if these requests ofa1 were run in iso-
lation (at a rate of 100 req/sec) they would complete in
0.25 sec; similarly the 40 requests ofa2 would complete
in 0.2 sec. Hence the total time to complete requests
of both applications using an isolating scheduler would
be Tm = 0.45 sec. The efficiency of the fair scheduler
is Tm/Ts = 0.45. If the fair scheduler were improved
and the measured throughputs ofa1 and a2 increased
to 40 and 80 req/sec, the efficiency would increase to
(40/100+80/200)/1= 0.8. In some cases the use of a
fair scheduler can actually lead to a speedup rather than
a slowdown by merging the workloads; in this case the
efficiency can exceed 1. For instance, if the measured
throughputs were 60 and 120 req/sec, the corresponding
efficiency would be 60/100+120/200= 1.2.

Definition 1 provides a formal definition for the ef-
ficiency measure discussed above. Lemma 1 derives a

simple relation between efficiency and the measured and
isolated throughputs of the applications.

Definition 1. Efficiency metric (E): Let S be a set of
requests serviced together in the interval(t1,t2) by the
fair scheduler. Let Ts = (t2− t1). Let Tm denote the total
time needed to service the requests in S by running each
application in isolation. The efficiency of the scheduler
in the interval(t1, t2) is defined as:

E (t1, t2) = Tm/Ts (1)

Lemma 1. E (t1, t2) = ∑i r i/ni

Proof. Consider the time interval(t1, t2) and suppose the
fair scheduler servicesβi requests ofai , i = 1, · · ·n, when
running all the applications together.Ts = t2− t1 denotes
the length of the interval. By definition, the through-
put of ai in the shared environmentr i=βi/Ts. The time
required to service theβi requests ofai in isolation is
given byt ′i = βi/ni , sinceni is the throughput ofai when
running in isolation. The time needed to service all the
requests inS by running each application in isolation
is therefore given byTm = ∑i t

′
i = ∑i βi/ni = Ts∑i r i/ni.

Hence efficiencyE (t1, t2) = Tm/Ts = ∑i r i/ni.

Higher values are better for this metric and and a
value of 1 means that the throughput obtained for a
given workload matches that obtained by running the
different applications making up the workload in isola-
tion. A value greater than 1 means that the concurrent
workload has higher throughput than running the appli-
cations in isolation. This happens when random work-
loads are merged as shown in the experimental results in
Section 4.1. This is because the lower level seek opti-
mizer gets more opportunities to reduce the time spent
on seeking. Also note that our definition is indepen-
dent of the weight of the applications. In previous works
such as Argon [19], the notion of efficiency is coupled
with the notion of fairness, where the expected output
for an application with weightwi is wi ×ni. Herewi is
the normalized weight, such that all of the weights sum
to 1. The main benefit of our metric is that it allows us
to compare efficiencies even for schedulers with widely
different fairness guarantees.

We next define a fairness index that measures how
close the ratios of the throughputs of the different appli-
cations comprising the workload matches the ratios that
would result from a proportional allocation. Over the
interval(t1,t2), let the fair scheduler provide a through-
put of r i for applicationai . Thenw′i = r i/∑ j r j is the
fraction of the throughput thatai receives in the shared
server. By definition, the weightwi is the fraction of
the throughput thatai should receive from an ideal fair
scheduler. W′ = [w′1,w

′
2, · · ·w

′
N] denotes the vector of

measuredservice fractions andW = [w1,w2, · · ·wN] the

vector of ideal service fractions expected from a fair
schedule. The measure of fairness is the ”distance” be-
tween the measured vectorW′ and the ideal vectorW. A
number of different distance measures are discussed in
the statistics literature; we use the well-knownL1 norm
(Manhattan distance) as the measure in this paper. The
L1 distance between the vectors is defined as∑i |wi−w′i|.
Note that since∑i wi = 1= ∑i w

′
i , bothW andW′ are unit

vectors under theL1 norm.

Definition 2. Fairness index (F): Let application ai ob-
tain a throughput ri over an interval(t1,t2). The total
throughput is R= ∑n

i=1 r i , and the measured weight of ai

is w′i = r i/R. The fairness index is defined as:

F (t1,t2) = ∑
i
|wi−w′i| (2)

Note that theL1 distance between the vectors, and
henceF (t1,t2), can range between 0 and 2. The lower
value is better, since it means that the ratio of the appli-
cation throughputs have a good match with the weights.

Finally, we consider the notion of fairness granular-
ity. A scheduler that is fair over short intervals of time is
also fair over large intervals (by simple aggregation), but
the reverse is not necessarily true. As such, a scheduler
that is fair over short intervals is strictly fairer than one
that is only fair over long intervals. Intuitively, the fair-
ness granularity of a scheduler is the smallest length of
time over which it is consistently fair; smaller is better.
Thus, a scheduler with a fairness granularity of one sec-
ond may deviate from a proportional allocation of ser-
vice over intervals shorter than one second, but assures
proportional allocation for measurement intervals of one
second or longer. The techniques we propose in the next
section work by relaxing fairness granularity in order to
gain efficiency. A formal definition of fairness granular-
ity is given below.

Definition 3. Fairness Granularityδ(fm) is defined as
the smallest time durationε such that95th percentile
value of the set{F (t1 + (m− 1)ε, t1 + mε), m =
1, · · ·(t2− t1)/ε} is less than fm.

That is, the Fairness Granularity is the smallest inter-
val lengthε, for which at least 95% of the intervals have
a fairness index less thanfm.

Having looked at the metrics that we use to measure
the performance of a fair scheduling framework, we now
look at various fair scheduling algorithms and the design
of an efficient fair scheduler.

4 Fair Scheduler Design
In this section, we first study the inherent trade-off be-
tween the I/O efficiency and the fairness guarantees of
proportional share I/O schedulers and introduce two pa-
rameters that impact both. We characterize this trade-off

 100

 1000

 10000

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

IO
P

S
)

Queue Size (D)

SSS
RSR
RRR

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

E
ffi

ci
en

cy
 M

et
ric

Queue Size (D)

SSS
RSR
RRR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70

F
ai

rn
es

s
m

et
ric

 (
1

se
c

in
te

rv
al

)

Queue Size (D)

SSS
RSR
RRR

(a) Throughput (b) Efficiency (c) Fairness

Figure 2:Bounded concurrency.

experimentally by modifying the I/O issue behavior of a
proportional share scheduler and using synthetic work-
loads. We then incorporate our findings into a new de-
sign for an efficient proportional share I/O scheduler.

For our experimental evaluation, we used a modified
version of the Deficit Round Robin (DRR [18]) sched-
uler. The basic DRR algorithm performs scheduling de-
cisions in rounds: it allocates aquantumof tokens to
each application (or input queue) in a round, and the
number of tokens is proportional to the application’s
weight. The number of IOs transferred from an appli-
cation’s input queue to the output queue is proportional
to the number of accumulated tokens the application has.
If the application has no IOs pending in its input queue
in a round, the tokens disappear. Otherwise, if there are
both IOs and tokens left, but there are not enough to-
kens to send any more IOs, then the tokens persist to the
next round (this is the deficit). The DRR algorithm can
produce throughput proportional to the application’s as-
signed weight, where the throughput is measured either
in bytes/sec, or in IOs/sec (IOPS), by changing how to-
kens are charged for the IOs. We use IOPS in this paper.

Although our adaptations can be combined with most
fair schedulers such as SFQ, WFQ,etc., we chose DRR
for two main reasons: (1) the run-time for DRR is O(1)
amortized over a number of requests, whereas other
schedulers take O(logN) for N applications; (2) DRR
provides similar fairness guarantees as other propor-
tional share algorithms; We performed two modifica-
tions to the basic DRR algorithm so that we can study
the relationship between I/O efficiency and the fairness
granularity exhibited by the DRR. The first modification
allows us to control the concurrency of the I/O requests
at the storage system and the second one allows us to
take advantage of the spatial locality of a request stream,
if any. In the next two sections, we describe each of these
modifications in detail and present our experimental re-
sults showing how they impact the I/O efficiency and the
fairness granularity.

4.1 Bounded Concurrency

The amount of concurrency at the storage device has a
profound impact on the achievable throughput. This is
because higher levels of concurrency allow the scheduler
to improve the request ordering so that the mechanical
delays are minimized. In addition, higher levels of con-
currency allow RAID devices or striped volumes to take
advantage of the multiple disk drives they contain.

Proportional share I/O schedulers carefully regulate
the requests from each application before issuing them
to the storage system. This is necessary for achieving
the desired proportionality guarantees that these sched-
ulers seek to provide. Unfortunately, this also has the
side effect of limiting the amount of request concurrency
available at the storage devices. As a result, even if there
is concurrency available at the workload, the DRR algo-
rithm dispatches only a portion of the pending requests
in a round, and the concurrency levels in storage systems
tend to be low.

Our first modification to the DRR scheduler is to make
the number of outstanding scheduled requests,D, a con-
trollable parameter. We call this parameterthe concur-
rency bound. This allows the modified DRR scheduler
to keep a larger number of requests pending at the stor-
age system. Figure 2(a) shows the I/O throughput ob-
tained by the modified DRR scheduler as a function of
the concurrency bound. For this experiment, we used
three workloads and set their weights in the ratio 1:2:3.
All three were closed workloads, each keeping a total
of 8 requests outstanding. In the legend, S means a
sequential workload and R means a random workload.
Hence RRR means three random workloads running si-
multaneously. Figure 2(a) shows that overall throughput
increases with higher concurrency levels, and the gains
in I/O throughput are substantial. We also plot the effi-
ciency metric for various values of D, as shown in fig-
ure 2(b). Note that efficiency is higher than 1 for mixes
with random workloads. This is because putting together
random workloads results in higher seek efficiency. On
the other hand, sequential workload mix has a lower ef-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

IO
P

S
)

Batch Size (G)

LLL
RLR
RRR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

E
ffi

ci
en

cy
 (

%
 o

f s
ta

nd
al

on
e)

Batch Size for App2

Overall Efficiency

(a) Case 1: Throughput for various work-
load mixes with different batch sizes

(b) Case 2: Overall Efficiency for a mix of
one random and one sequential workload

Figure 3:Variable size batching.

ficiency even at large queue depths because of frequent
switching among various workloads and higher seek de-
lays that do not occur when the sequential workloads are
run in isolation.

While increasing concurrency improves the I/O effi-
ciency, it also impacts the fairness guarantees of the pro-
portional share I/O scheduler. Figure 2(c) shows the pro-
portional share fairness index at a 1 second granularity
for the same experiment. It shows that higher concur-
rency also leads to substantial loss of fairness, result-
ing in each application receiving substantially different
throughputs from their assigned weights. We notice that
the fairness starts decreasing atD = 8, and becomes sim-
ilar to the fairness of a standard throughput maximiz-
ing scheduler as the concurrency bound approaches to
D = 20. The modified DRR behaves like a pass through
scheduler at this point and loses all its ability to reg-
ulate the throughput proportions of individual applica-
tions. Observation: Random workloads benefit more
from the higher concurrency in comparison to sequen-
tial workloads.

4.2 Variable Size Batching
The other factor that impacts the I/O efficiency is the
handling of spatial locality. Most storage systems im-
plement some form of prefetching for sequential work-
loads which trades off additional transfer time with po-
tential savings from fewer mechanical seeks. An I/O ef-
ficient proportional share scheduler also needs to handle
sequential workloads differently to take advantage of the
locality.

Our second modification to the DRR scheduler is to
introduce variable size batching so that highly sequen-
tial workloads and large prefetches can be supported for
efficient proportional sharing. We introduce abatch size
parameterG, which refers to the number of IOs that are
scheduled from an application in one round of DRR.
This parameter can be different for each workload de-
pending on the degree of spatial locality present; we

denote the batch size for applicationai asGi . Variable
size batching allows more requests from a given applica-
tion to be issued as a batch to the storage system before
switching to the next application. Thus, it reduces inter-
ference among applications to benefit sequential work-
loads and workloads exhibiting spatial locality.

One way to increase the batch size is to increase the
batch size of all applications in a proportionate manner
for every round. This, however, leads to an increase in
batching even for applications that may not necessarily
benefit from it. To verify this we ran 3 different work-
load mixes, RRR, RLR, and LLL. Here L means a work-
load with high locality. Figure 3(a) shows the overall
I/O throughput achieved from the modified DRR sched-
uler as the batch size is varied.Observation: Workloads
with high locality benefit substantially from the variable
batch sizes and random workloads are almost unaffected
by the batch size parameter.

Since all workloads do not benefit from a higher batch
size, we would like to be able to have different batch
sizes based on the locality of the workload. We modi-
fied DRR to assign each application a number of tokens
based on its batch size. Clearly, this can conflict with
the assigned weight of the application; to balance this,
applications with modified number of tokens should not
receive any tokens for a number of rounds so as to pre-
serve the overall proportions. We do this by skipping
one or more rounds for these applications. The number
of rounds to be skipped can be easily computed. For
example, consider 3 applications with weights in ratio
1:2:3. Let the batch sizes be 128, 64 and 16 for applica-
tions 1, 2 and 3 respectively. Now, based on the weights
and batch sizes, application 1 will get a quantum of 128
every 24 rounds, application 2 will get a quantum of 64
every 6 rounds and application 3 will get a quantum of
16 every round. Fractional allocations were not needed
in this example, but they can also be handled in a similar
manner.

To test that variable batch size indeed helps in im-
proving efficiency, we experimented with 2 workloads,

one random and other sequential. Here, we varied the
batch size of the sequential workload from 1 to 256. Fig-
ure 3(b) shows the overall I/O efficiency with the vari-
able batch sizes. We observe that for small batch sizes
the performance is lower (64 % of stand-alone through-
put). However, for a batch size of 128, we get the desired
efficiency (close to 100% of stand-alone throughput) and
the overall throughput of the workloads is 1155 and 80
IOPS which is very close to half the stand alone perfor-
mance (2380 and 160 IOPS).

However, the efficiency increase doesn’t come for free
— it adversely affect the fairness guarantees of the DRR
algorithm. In effect, the assigned weights can be en-
forced by the modified DRR scheduler at a larger time
granularity. When the batch of I/Os are issued from a
workloadai, it gets ahead of others in terms of allocated
proportion of the shared system. As the DRR sched-
uler skips the workloadai in the subsequent rounds, the
assigned weights are reached but over a longer time in-
terval.

4.3 Parameter Adaptation

We have discussed two techniques for balancing the ef-
ficiency and fairness provided by a storage server: vari-
able size batching and bounded concurrency. Variable
size batching requires a batch size per application that
depends on how sequential (or spatially local) it is, and
bounded concurrency requires a parameter (D) to limit
the number of outstanding scheduled requests. The best
values for all these parameters depend on the workload
characteristics and the load on the system. Since the re-
lationship between workload characteristics and the best
parameter values can be complex, and workloads and
system loads vary over time, it is impractical for an ad-
ministrator to provide the values for these parameters.
We implemented an automated, adaptive method to set
the per-application variable batch sizes and the concur-
rency parameters.

Adapting batch sizes:As we showed in section 4.2,
increasing the batch size for application workloads that
are sequential or spatially local improves the efficiency
of the storage server by reducing the disk seeks, at some
cost to the fairness. Ideally, one would set the batch size
large enough to capture the sequentiality of each work-
load, but no larger. We do this by periodically setting
the batch size of the application to its average recentrun
length (up to a maximum value). A run is a maximal
sequence of requests from a workload that are within a
threshold distance of the previous request — we used a
threshold distance of 128KB, which is tunable. Algo-
rithm 1 shows the pseudo-code that tracks the lastK run
lengths; the average recentK run lengths used as batch
sizeLi .

Adapting concurrency: As discussed in section 4,
the efficiency of the storage server generally increases
as the concurrency of the server is increased; however,
too large an output queue may lead to a loss in fairness.
The length of the output queue required to maintain pro-
portional service depends not only on the weights of the
applications but also on the number of pending requests.
For example, consider two closed applications with 16
IOs pending at all times and weights in the ratio 1:4.
Now, in the output queue of lengthD, we should have
D/5 requests froma1 and 4D/5 requests froma2. When
D is larger than 20, all 16 pending requests ofa2 are in
the output queue, and it does not have any more requests
to send; the remaining slots in the queue may be oc-
cupied by pending requests froma1 (which still has 12
pending requests in the DRR queue) affecting the fair-
ness guarantees. This is because DRR can only guaran-
tee proportional service so long as the applications are
backlogged — that is, there are enough pending requests
in each application queue to use up the tokens available
and fill the output queue. Thus, we need to adapt the
length of the output queue based on the number of re-
quests pending from an application and its share.

LT = 128K (locality threshold);1

int runCount[K], runPos[K];2

int current = 0;3

Compute Locality()4

// If request address is not within threshold,5

start new run;
reqLBN = logical block number of current6

request;
if (|runPos[current] - reqLBN| > LT) then7

current++;8

if (current == K) then9

current = 010

end11

runCount[current] = 0;12

end13

runCount[current]++;14

runPos[current] = reqLBN;15

Add request to corresponding DRR queue;16

Periodically: (every 1 second)17

Li = average of non-zero runCount[] entries;18

1: Calculating average run length

On Request Arrival:
Compute Locality();
Enqueue request in application’s queue;
Dequeue request();

On Request Completion:
D = D -1;
Dequeue request();

2: Adaptive DRR algorithm

DCi : deficit count of applicationai ;1

Pi : number of requests pending in output queue2

QD;
Ri : number of requests pending in application3

queueQi ;
curHead = index of current queue;4

Dequeue Request():5

for count← 1to N do6

i = curHead;7

// If inactive, be work conserving and go to8

next queue
if (Pi + Ri == 0) then9

curHead++;10

if (curHead == N) then11

curHead = 012

continue;13

// If active and has request, send it14

if (DCi ≥ 1 AND Ri > 0) then15

DCi = DCi-1;16

Ri = Ri - 1;17

Pi = Pi + 1;18

D = D + 1;19

Send request fromai ;20

return;21

// If active with no request, return22

if (Pi > 0 AND Ri == 0) then23

return // Do not send more;24

curHead++;25

if (curHead == N) then26

curHead = 027

// Deficit count is zero, replenish and start over28

for i← 1 to N do29

if (ai deserves quantum)then30

DCi = Gi31

goto line 6;32

3: DRR request dispatching.

A method to control the concurrency to maximize ef-
ficiency while maintaining fairness is shown in Algo-
rithm 3. In order to maximize the efficiency of the server,
we allow the concurrency to increase so long as each ac-
tive application that has tokens for a round has pending
IOs in its DRR queue. If the current applicationai has
no pending requests in the DRR queue we stop send-
ing requests (thereby decreasing concurrency as requests
complete at the server) until one of two events occurs:
eitherai sends a new request (perhaps triggered by the
completion of an earlier request) or it completes all its
requests in the output queue. In the first case, we con-
tinue addingai ’s requests to the output queue. In the
second case, we declareai inactive and continue serving
requests from the next DRR queue. In addition, when an
application runs out of tokens, the round continues with
the next DRR queue. An application is considered active
if it has at least one request in the scheduler input queue,
output queue, or outstanding at the server. Since every

active application receives the full service it is entitled
to in each round, the algorithm guarantees proportional
service for all active applications. Finally, Algorithm 2
shows the overall adaptive DRR algorithm.

5 Analytical Bounds
Increasing the concurrency and the per-application batch
sizes for sequential or local workloads improves the effi-
ciency of the fair scheduler, but at some cost in fairness,
as we have observed. In this section, we present some
analytical bounds on how far the resulting scheduler can
deviate from proportional service.

Most fair schedulers such as WFQ [5], SFQ [8], Self-
Clocked [6] and DRR [18], guarantee that the differ-
ence between the (weight-adjusted) amount of service
obtained by any two backlogged applications in an in-
terval is bounded. The bound is generally independent
of the length of the interval. During any time interval
[t1,t2], where two flows (applications)f andg are back-
logged for the entire interval, the difference in aggregate
cost of requests completed forf andg, is given by:

∣

∣

∣

∣

Sf (t1,t2)

wf
−

Sg(t1,t2)
wg

∣

∣

∣

∣

≤
cmax

f

wf
+

cmax
g

wg
(3)

wherecmax
i is the maximum cost of a request from flow

ai [6, 8]. Cost is any specified positive function of the
requests; for example, if the cost of each request is one,
the aggregate cost is the number of requests. A similar
(but weaker) bound has been shown for the basic DRR
algorithm [18].

When the server is allowed to have multiple outstand-
ing requests simultaneously, the bound is larger. For ex-
ample, Jin et al. [12] show that in SFQ(D), where the
server has up toD outstanding requests, the bound in
Eq. 3 is multiplied by(D+1). In our case, as shown be-
low, the bound grows as bothD and the maximum value
of the batch sizes.

Theorem 1. During any time interval[t1,t2], where two
applications ai and aj are backlogged, the difference in
weight-adjusted amount of work completed by DRR us-
ing corresponding batch-sizes Gi , Gj , and concurrency
D is bounded by:

∣

∣

∣

∣

Si(t1,t2)
wi

−
Sj(t1,t2)

wj

∣

∣

∣

∣

≤ 2(
Gi

wi
+

G j

wj
)+D(

1
wi

+
1
wj

)

Essentially, the theorem says that the bound on unfair-
ness increases proportionally with a linear combination
of the concurrency boundD and the batch size parame-
tersGi andG j . We present a proof for this theorem in
the Appendix.

Parameters
D,[G1,G2,G3]

r1
(MB/s)

r2
(MB/s)

r3
(MB/s)

E

1,[1,3,5] 0.52 1.55 2.59 0.53
8,[1,3,5] 0.84 2.51 4.18 0.86
16,[1,3,5] 0.97 2.91 4.84 0.99

8,[8,24,40] 0.85 2.53 4.22 0.86
8,[16,48,80] 0.84 2.49 4.19 0.85
8,[32,96,160] 0.85 2.51 4.22 0.86

Parameters
D,[G1,G2,G3]

r1
(MB/s)

r2
(MB/s)

r3
(MB/s)

E

1,[1,3,5] 1.27 3.78 6.3 0.39
8,[1,3,5] 1.61 4.83 8.04 0.49
16,[1,3,5] 2.12 6.34 10.43 0.64
8,[8,24,40] 2.26 6.76 11.3 0.69
8,[16,48,80] 2.46 7.33 12.33 0.75
8,[32,96,160] 2.78 2.51 13.96 0.85
8,[16,96,240] 2.91 8.69 14.62 0.89
8,[16,128,320] 2.98 8.81 14.95 0.91

(a) Workload RRR: stand alone throughput is R:8.8MB/s (b) Workload RLL: stand alone throughputs are: R:8.8MB/s, L:41.85MB/s.

Parameters
D,[G1,G2,G3]

r1
(MB/s)

r2
(MB/s)

r3
(MB/s)

E

1,[1,3,5] 1.87 5.58 9.49 0.4
8,[1,3,5] 1.74 5.16 8.76 0.37
16,[1,3,5] 2.45 7.32 12.4 0.53
8,[8,24,40] 2.94 8.77 14.91 0.64
8,[16,48,80] 3.62 10.79 18.44 0.78
8,[32,96,160] 4.21 12.51 21.38 0.91
8,[16,96,240] 4.11 12.24 20.92 0.89
8,[16,128,320] 4.69 14.08 23.83 1.02

Parameters
D,[G1,G2,G3]

r1
(MB/s)

r2
(MB/s)

r3
(MB/s)

E

1,[1,3,5] 1.09 3.26 5.43 0.13
8, [1,3,5] 2.28 6.79 11.32 0.26
16,[1,3,5] 3.22 9.61 15.39 0.36
8,[8,24,40] 5.03 15.05 25.06 0.58
8,[16,48,80] 5.92 17.71 29.63 0.68
8,[32,96,160] 6.22 18.59 31.21 0.72
8,[128,384,640] 7.06 21.12 35.86 0.82
8,[256,768,1280] 8.03 24.02 40.79 0.94

(c) Workload LLL: stand alone throughput is L:41.85MB/s. (d) Workload SSS: stand alone throughput is S:77.8MB/s.

Table 2: Measured throughput and efficiency for various settings of concurrency bound and batch size.

6 Experimental Evaluation
In this section, we evaluate our mechanisms for improv-
ing the I/O efficiency of proportional share schedulers.
We used a variety of synthetic workloads and trace re-
play workloads in our experiments. Our results are based
on the modified DRR scheduler, but our techniques are
general enough that they can be applied to other propor-
tional share schedulers.

Overall, we highlight two main points in our evalua-
tion. First, we show how the two parameters we intro-
duced, bounded concurrency, and the variable batch size,
can be adjusted to get high efficiency without a signifi-
cant degradation in fairness. We don’t use adaptation,
but instead use fixed values of these parameters to study
their affect. Since our approach trades off short term
fairness in order to get higher I/O efficiency, we evalu-
ate both fairness and efficiency. Second, we show how
these parameters can be adapted for dynamically chang-
ing workloads. We also compare our adaptive DRR
mechanism with other existing algorithms such as an-
ticipatory scheduler, base DRR and SFQ(D) [12].

6.1 Experimental Setup
Our experimental setup consists of a Linux kernel mod-
ule that implements our mechanisms in a modified DRR
scheduler. The module creates a bunch of pseudo de-

vices (entries in /dev), which are backed up by a block
device that can be a single disk, a RAID device or a
logical volume. Different applications access different
pseudo devices. This allows us to classify requests from
different applications, and we can set weights for each
pseudo device. Our module intercepts the requests made
to the pseudo devices and passes them to the lower level
Anticipatory scheduler in Linux based on the DRR al-
gorithm with our modifications. Anticipatory scheduler
then dispatches these requests based on its own seek
minimization algorithm, we don’t make any modifica-
tions to it.

We use a variety of synthetic micro-benchmarks and
trace-replay workloads in our experiments. We experi-
mented with three synthetic workloads and four differ-
ent workload mixes. The random workloadR repre-
sents an application with 16 pending IOs of 32KB each
distributed randomly over the volume. The throughput
of this random workload when running in isolation is
8.8MB/s (281 IOPS). The spatially local workload L
does 32K sized IOs separated by 16K each. This highly
local application has throughput, running in isolation,
of 41.85 MB/s (1339 IOPS). The sequential workload
sends 32K sized sequential IOs and has overall through-
put of 77.8 MB/s (2490 IOPS) in isolation. We con-
sider 4 different mixes representing different number of

random, local, and sequential workloads, defined as as
RRR, LLL, SSS and RLL. Here RLL represents one ran-
dom and two local workloads. The weights are assigned
in ratio1:3:5 in all cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

F
ai

rn
es

s
M

et
ric

Time (s)

RRR
RLL
LLL

SSS

Figure 4: Fairness indexF over time, for one second
measurement intervals. For each workload combination,
the parameter values with highest efficiency were used.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
ai

rn
es

s
M

et
ric

 (
90

th
 p

er
ce

nt
ile

)

Time interval (sec)

SSS
LLL

RRR

Figure 5: 90th percentile value of Fairness indexF
for various measurement intervals over which fairness
is computed. For each workload set, the parameter com-
bination with the best efficiency is used.

6.2 I/O Efficiency

In section 4, we showed the impact of individual pa-
rameters on fairness and I/O efficiency based on micro-
benchmarks. In this section, we look at the combined
effect of all the parameters. Our goal is to show that
we can adjust these parameters to obtain high I/O ef-
ficiency. Table 2(a),(b),(c) and (d) show the measured
throughput and efficiency metrics for different parame-
ter values, of workload mixes RRR, RLL, LLL and SSS
respectively. These results show that the baseline DRR
scheduler (whereD = 1 andG = 1) does indeed exhibit
poor I/O efficiency, between 0.13 (for the SSS workload)
and 0.53 (for the RRR workload). Our mechanisms im-
prove I/O efficiency to the levels above 90%, improving
the performance of the baseline DRR scheduler by a fac-
tor of two to seven for different workload mixes. Our
results indicate the following: (1) The random workload
mix (RRR) is unaffected by batching parameters and its
efficiency is solely dependent on the bounded concur-
rency (D). (2) Batching helps workloads with locality

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

IO
s

Time (msec)

D=1,G1=1,G2=2
D=8,G1=16,G2=32

D=8,G1=16,G2=128

Figure 6: Cumulative IOs of workload with high local-
ity for various values of parameters, D and G. The plot
shows the cumulative IOs from 1 to 3 sec. This indicates
that the fairness granularity increases with these param-
eters.

and their performance improves as we increase the batch
size. (3) It is possible to get high efficiency with small
values of D. This is important, since we have already
shown that setting D to a large value causes fairness to
deteriorate significantly.

Figure 4 shows the corresponding fairness for one
second intervals using the parameter settings that pro-
vides the highest I/O efficiency for each workload (i.e.,
the rows in bold face). Though the fairness is below
0.1 for most workloads at one second granularity, there
are cases where the parameter settings corresponding to
the highest I/O efficiency lead to poor fairness (e.g., up
to 0.4 for the SSS workload). We note that the base-
line DRR scheduler has perfect fairness becasue it uses
D = G = 1.

6.3 Fairness Granularity

We have shown earlier that the fairness indexF depends
on the time interval over which it is computed. Also
the analysis shows that the worst case fairness bound in-
creases with increase in parameter valuesD andG, and
so does the fairness granularity. In this section we show
how the value ofF changes with respect to the time
interval over which it is computed.

For each of the workload mixes RRR, LLL, and SSS,
we computed the fairness index values as a function of
the measurement time intervalt. That is, we computed
F (0,t), F (t,2t), F (2t,3t), Figure 5 shows the 90th

percentile of this set for values oft ranging from 100ms
to 2000ms. For each workload mix, we used the param-
eter combination that gave the best efficiency:D = 16
and small values of batch size for RRR, andD = 8 and
large values of batch size for the LLL and SSS work-
load mixes. The RRR workload has good fairnessF

(< 0.1) for measurement intervals of 300ms or higher,
whereas the other workloads require 1 second or more
to achieve low fairness values. While the fairness gen-
erally improves with higher measurement intervals, the

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 1000 2000 3000 4000

E
ffi

ci
en

cy
 M

et
ric

Fairness Granularity (ms)

SSS
LLL

RRR

(a) 1-disk

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 500 1000 1500 2000 2500

E
ffi

ci
en

cy
 M

et
ric

Fairness Granularity (ms)

SSS
LLL

RRR

(b) striped, 2-disks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

E
ffi

ci
en

cy
 M

et
ric

Fairness Granularity (ms)

SSS
LLL

RRR

(c) striped, 4-disks

Figure 7: Efficiency metricE with various time intervals over which fairness is very good(< 0.1) for three different
workload mixes.

changes are not monotonic. For the SSS workload, the
algorithm gains efficiency by allocating each workload a
large batch in one round, and then allocating no service
to it for several rounds. An interaction between the high
batch size and the measurement interval cause a bump in
the fairness graph, since one measurement interval may
have more rounds with large batches allocated than the
next. As such, the proportion of service received by a
workload may be too high in one measurement interval,
and too low in the next. However, the effect declines as
the measurement interval grows larger. Overall, the fair-
ness granularity is larger for the SSS case than for the
other workload mixes.

These results are also in agreement with our analysis,
which shows that the worst case fairness bound increases
in proportion to sum of the queue length and batching
parameters. To illustrate this further, we experimented
with two workloads, one random and one local, with
weights set in the ratio 1:2. Figure 6 shows the cumula-
tive IOs completed for the local workload with increas-
ing values of the two scheduler parameters. It shows
that higher values for parameter settings result in bigger
steps and bursts. Thus, if we measure throughput over
short periods, it is quite variable and the fairness can be
poor. If fairness is measured over longer periods, the
throughput smooths out, and the fairness is good.

6.4 Efficiency and Fairness Granularity
In this section we look at the relationship betweenfair-
ness granularityandefficiency. For this experiment, we
assume that the user needs very good fairness, say, a fair-
ness indexF less than 0.1. Figure 7 shows how the effi-
ciency of the scheduler varies with the fairness granular-
ity. As before, the workload weights are 1:3:5. Each
point represents one parameter setting for one work-
load mix in one storage configuration, and the efficiency
is plotted against the fairness granularityδ(0.1). We
evaluated three different back-end devices - one disk,
two and four disk striped LVMs. The parameter set-
tings are not shown (to avoid cluttering the figures),
but we note the parameter settings for some interesting

points below. In these plots, the ideal scheduler would
be in the top left-hand corner — high efficiency com-
bined with a low fairness granularity. For the random
workload mix (RRR), the best combination of efficiency
and fairness is achieved at a low fairness granularity
(300ms or less); the corresponding parameter settings
are D=16 and G=[1,3,5] in all configurations. Higher
batch sizes for the RRR workload mix increase the fair-
ness granularity without any improvement in efficiency.
For the workloads with significant locality or sequen-
tiality, the efficiency increases with the fairness gran-
ularity. In the case of the LLL workload mix, 90%
efficiency is achieved at a fairness granularity of 800–
900ms; this corresponds to the parameter settingD = 8,
G = [64,192,320] in all three configurations. The third
workload mix, SSS, is the most difficult test of the
scheduler, because it is hard to retain efficiency when
mixing sequential workloads. In this case, 90% effi-
ciency is achieved at a fairness granularity of 3900ms
for the single disk configuration, using the parameter set-
ting D = 8, G= [256,768,1280]. On the striped volume
configurations, 90% efficiency is achieved for the SSS
workload mix at a fairness granularity of 700–1100ms
(Figures 7(b) and 7(c)).Overall, we conclude that fair-
ness granularity can be traded for efficiency in a propor-
tional share I/O scheduler.

6.5 Adapting parameters to workloads
We have so far presented results with fixed values of the
concurrency and batch-size parameters. We now evalu-
ate the adaptive DRR algorithm presented in Section 4.3.

In our first experiment, we use a mixture of three
workloads, initially all random, and let one of the work-
loads increase its run length every 10 seconds, turning
into a more sequential workload. Ideally, as the third
workload gets more sequential, its batch size needs to
be adjusted to reflect this change. The weights of the
workloads are assigned in ratio 1:1:4, and each work-
load issues IOs of 32KB on a 2-disk stripe. Figure 8(a)
shows the overall throughput with the adaptive DRR al-
gorithm increases over time as one of the workloads be-

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0 10 20 30 40 50 60 70 80 90

IO
P

S

Time (s)

W3

W1, W2 are very similar

W1 (random)
W2 (random)
W3 (variable)

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90

E
ffi

ci
en

cy
 &

 F
ai

rn
es

s
M

et
ric

s

Time (s)

Overall Efficiency
Fairness metric

(b) I/O Efficiency and Fairness

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90

B
at

ch
 S

iz
e

Time (s)

Batch size

(c) Batch size

Figure 8: Dynamically adapting batch size as one of the workloads becomes more sequential over time, increasing
its run length every 10 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90

E
ff

ic
ie

n
cy

 &
 F

a
ir
n

e
ss

 M
e

tr
ic

s

Time (s)

Overall Efficiency
Fairness metric

(a) I/O efficiency and Fairness

 0

 20

 40

 60

 80

 100

 120

 140

 1000 2000 3000 4000 5000 6000

Q
u

e
u

e
 S

iz
e

 (
D

)

DRR Rounds

Queue Size
 Moving Average (500 rounds)

(b) Number of outstanding requests (D)

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

B
a

tc
h

 s
iz

e
 (

IO
s)

Time (s)

Sequential has batch size 256

Random workloads have batch size 1

Random
Random

Sequential

(c) Batch size

Figure 9: Dynamically adapting queue length as one of the workloads decreases its concurrency from 128 to 4 at 10
seconds granularity.

comes more sequential. We also plot the efficiency and
fairness (with 1 second measurement intervals) for the
same experiment in Figure 8(b) and the batch size of the
workload which changes its run length during the exper-
iment in Figure 8(c). These results show that the adap-
tive DRR is able to keep high I/O efficiency and trades
off short term fairness by letting the fairness index to in-
crease up to 0.1. It achieves this by varying the batch
size for the changing workload as it increases its run-
length as shown in Figure 8. We also sampled the queue
size at the storage system every second. Both the mean
and median queue length was 24.

In our second experiment, we again consider a mix-
ture of three workloads, two random and one sequential,
and let the sequential workload vary its concurrency (the
number of requests it has outstanding) from 128 to 4 at
10 second intervals. The random workloads each have
a fixed concurrency of 32 and issue 32KB IOs. Since
the sequentiality characteristics of the workloads do not
vary, the algorithm keeps the batch sizes for the work-
loads unchanged throughout — 256 for the sequential
workload and 1 for the random workload, as shown in
Figure 9(c). The overall concurrency — the total num-
ber of outstanding requests — decreases from 196 to 68
over a period of 150 seconds. To adapt to the chang-
ing concurrency of the workload, the algorithm auto-

matically adjusts the number of requests at the back-end
queue, as shown in Figure 9(b). As the pending count
for the sequential workload decreases, so does the av-
erage queue length. However, the sequential workload
gets a large batch of size 256 (because it is sequential)
and then misses its turn for the next 64 rounds (because
its weight is 4). During those rounds, the queue size
is high because of the backlog from the random work-
loads. The large back-end queue allows for good seek-
optimization and high efficiency with random requests.
Figure 9(a) shows the efficiency and fairness for the du-
ration of the experiment. The overall efficiency is close
to 90% and fairness measured over one second intervals
is around 0.1, which indicates that the adaptive algo-
rithm successfully manages the back-end queue depth
to obtain good efficiency and fairness despite the rapidly
changing workload.

6.6 Comparison With Other Approaches

In this section, we compare the performance of our adap-
tive DRR mechanism with some of the well known algo-
rithms, that are used in practice and are proposed in lit-
erature. We compare with three other algorithms: Antic-
ipatory scheduler, SFQ(D) and base DRR. Anticipatory
scheduler is available in Linux distribution and other two
we implemented as modules. First we use the workload

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

IO
P

S
)

Time (s)

harp
tpcc

openmail

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

IO
P

S
)

Time (s)

harp
tpcc

openmail

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90

E
ffi

ci
en

cy
 &

 F
ai

rn
es

s
M

et
ric

s

Time (s)

Overall Efficiency
Fairness metric

(a) Traces replayed in isolation (b) Traces replayed with adaptive DRR (c) Overall Efficiency

Figure 10: Running three different traces (openmail, tpcc and harp) using adaptive DRR.

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60

E
ffi

ci
en

cy
 M

et
ric

Time (s)

AS
DRR
SFQ

Adaptive-DRR

(a) Efficiency metric comparison

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

F
ai

rn
es

s
M

et
ric

Time (s)

AS
DRR
SFQ

Adaptive-DRR

(b) Fairness index comparison

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90 100
E

ffi
ci

en
cy

 M
et

ric

Time (s)

AS
DRR
SFQ

Adaptive-DRR

(c) Efficiency metric comparison

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

F
ai

rn
es

s
M

et
ric

Time (s)

AS
DRR
SFQ

Adaptive-DRR

(d) Fairness index comparison

Figure 11: Comparison of adaptive DRR with anticipatory, SFQ(D) and base DRR schedulers.

mix of three workloads, which are all random and we
make one of them increase the run length every 10 sec-
onds, going from 1 to 1024. The weights are set to 1:1:4
and all workloads are doing 16 concurrent IOs of 32KB
each. Figure 11a and 11b show the efficiency and fair-
ness index for various schedulers. Note that adaptive
DRR is very close to anticiapatory scheduler in terms of
efficiency. Other mechanisms such as base DRR and
SFQ(D) show poor efficiency and that gets worse as
batch size increases. This is mainly because they can’t
adapt to the change in batch size. However, these mecha-
nisms provide very good fairness. Note that anticipatory
scheduler provides very poor fairness, where as adaptive
DRR is able to provide very good fairness close to the
SFQ(D) and base DRR, even for a batch size of 1024.

Next we experimented with variable concurrency
workload, where third workload changes its concurrency
from 128 to 4 by periodically decreasing the number of
outstanding IOs every 10 seconds. Figure 11c and 11c
show the efficiency and fairness index for various sched-
ulers. Again note that adaptive DRR is close to antici-
apatory scheduler in terms of efficiency. However an-
ticipatory scheduler provides very poor fairness, where
as adaptive DRR is able to provide very good fairness
close to the SFQ(D) and base DRR.These results show
that adaptive DRR is able to provide good fairness along
with providing high efficiency even in presence of work-
load changes.

6.7 Postmark Experiments

6.8 Experiments with Traces

In this section, we experiment with real world traces
to evaluate our adaptive scheduler. We used three rep-
resentative traces for mail server (openmail), data base
(tpcc), and file system (harp) workloads. We replayed
these traces on a 4-disk logical volume [1]. Figure 10(a)
shows the throughput obtained by traces when they are
run separately, in isolation. Since traces are open work-
loads, the rate of request completion is also bounded by
the actual arrivals in the trace. We observe that on aver-
age openmail, tpcc and harp get 540, 1470 and 2800 IOs
respectively. Then we ran these traces using DRR with
weights in ratio 1:3:5. Figure 10(b) shows the through-
put while running all three simultaneously. Note that in-
dividual IO throughputs are lower than those obtained in
isolation because system cannot provide the full desired
service to all of them. Figure 10(c) shows the overall ef-
ficiency of the system (this calculation is done assuming
a steady state average throughput in isolation). The effi-
ciency is around 1.4 due to two reasons: (1) combining
multiple traces leads to an increase in system utilization
as the overall arrival rate increases, and (2) combining
workloads causes the size of the I/O queues to increase,
providing more opportunities for the lower level sched-
ulers to improve the efficiency. These results show that
our adaptive DRR algorithm handles the substantial vari-
ation in workload characteristics exhibited by real world

workloads.

7 Conclusions
In this paper we studied the trade-off between fairness
and efficiency in a shared storage server. We showed
how this trade-off can be controlled using two parame-
ters: variable size batching and the depth of the sched-
uler’s output queue. We highlight the important char-
acteristics of each of these parameters and show that
they can be tuned to trade off fairness granularity —
short term fairness — with efficiency. We then present
a self-tuning algorithm that sets the values of these two
parameters based on dynamic workload characteristics.
We validated our approach by an extensive experimen-
tal study using both synthetic micro-benchmarks and ac-
tual traces. The approach is also backed up by a formal
framework and analysis that supports the experimental
results. Experimental results using a variety of work-
load mixes indicate that an I/O efficiency of over 90%
is achievable by allowing the scheduler to deviate from
proportional service for a few seconds at a time.

References
[1] E. Anderson, M. Kallahalla, M. Uysal, and R. Swami-

nathan. Buttress: A toolkit for flexible and high fidelity
I/O benchmarking. InProc. of Conf. on File and Storage
Technologies (FAST’04), pages 45–58, March 2004.

[2] J. C. R. Bennett and H. Zhang.WF2Q: Worst-case fair
weighted fair queueing. InProc. of INFOCOM ’96,
pages 120–128, March 1996.

[3] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Sil-
berschatz. Disk scheduling with quality of service guar-
antees. InProc. of the IEEE Int’l Conf. on Multimedia
Computing and Systems, Volume 2. IEEE Computer So-
ciety, 1999.

[4] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav,
J. Xu, R. Menon, and T. P. Lee. Performance virtual-
ization for large-scale storage systems. InSymposium on
Reliable Distributed Systems, pages 109–118, Oct 2003.

[5] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queuing algorithm.Journal of Internet-
working Research and Experience, 1(1):3–26, September
1990.

[6] S. Golestani. A self-clocked fair queueing scheme for
broadband applications. InProc. of INFOCOM’94, pages
636–646, April 1994.

[7] P. Goyal, X. Guo, and H. M. Vin. A hierarchial cpu
scheduler for multimedia operating systems.SIGOPS
Oper. Syst. Rev., 30(SI):107–121, 1996.

[8] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair
queuing: A scheduling algorithm for integrated services
packet switching networks. Technical Report CS-TR-96-
02, UT Austin, January 1996.

[9] A. G. Greenberg and N. Madras. How fair is fair queuing.
J. ACM, 39(3):568–598, 1992.

[10] A. Gulati, A. Merchant, and P. Varman.pClock: An ar-
rival curve based approach for QoS in shared storage sys-
tems. InProc. of ACM SIGMETRICS, pages 13–24, June
2007.

[11] L. Huang, G. Peng, and T. cker Chiueh. Multi-
dimensional storage virtualization. InSIGMETRICS
’04/Performance ’04: Proceedings of the joint interna-
tional conference on Measurement and modeling of com-
puter systems, pages 14–24, June 2004.

[12] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. InSIGMETRICS
’04/Performance ’04: Proceedings of the joint interna-
tional conference on Measurement and modeling of com-
puter systems, pages 37–48, June 2004.

[13] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Per-
formance differentiation for storage systems using adap-
tive control.Trans. Storage, 1(4):457–480, 2005.

[14] C. Lumb, A. Merchant, and G. Alvarez. Façade: Virtual
storage devices with performance guarantees.Proc of
Conf. on File and Storage Technologies (FAST’03), pages
131–144, March 2003.

[15] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M.
Wong, and C. Maltzahn. Efficient guaranteed disk re-
quest scheduling with fahrrad.SIGOPS Oper. Syst. Rev.,
42(4):13–25, 2008.

[16] A. L. N. Reddy and J. Wyllie. IO issues in a multimedia
system.IEEE Computer, 27(3):69–74, 1994.

[17] P. J. Shenoy and H. M. Vin. Cello: a disk scheduling
framework for next generation operating systems. In
Proc. of ACM SIGMETRICS, pages 44–55, June 1998.

[18] M. Shreedhar and G. Varghese. Efficient fair queue-
ing using deficit round robin. InProc. of SIGCOMM
’95, pages 231–242, New York, NY, USA, August 1995.
ACM Press.

[19] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared stor-
age servers. InProc. of Conf. on File and Storage Tech-
nologies (FAST’07), pages 5–5, 2007.

[20] C. A. Waldspurger. Memory resource management
in vmware esx server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, 2002.

[21] T. M. Wong, R. A. Golding, C. Lin, and R. A. Becker-
Szendy. Zygaria: Storage performance as managed re-
source. InProc. of RTAS, pages 125–34, April 2006.

[22] J. C. Wu and S. A. Brandt. The design and implementa-
tion of Aqua: an adaptive quality of service aware object-
based storage device. InProc. of IEEE/NASA Goddard
Conference on Mass Storage Systems and Technologies
(MSST 2006), pages 209–18, May 2006.

[23] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,
and E. Riedel. Storage performance virtualization via
throughput and latency control. InProc. of MASCOTS,
pages 135–142, September 2005.

8 Appendix

8.1 Analysis
Theorem 2. During any time interval[t1, t2], where two
applications ai and aj are backlogged, the difference in
weight-adjusted amount of work completed by DRR us-
ing corresponding batch-sizes Gi , Gj , and concurrency
D is bounded by:

∣

∣

∣

∣

Si(t1,t2)
wi

−
Sj(t1, t2)

wj

∣

∣

∣

∣

≤ 2(
Gi

wi
+

G j

wj
)+D(

1
wi

+
1
wj

)

Proof. Consider an interval [t1, t2] where applicationai

getsmi non-zero quantum allocations. Each quantum
allocation corresponds to batch sizeGi of ai . The total
amount of service obtained byai can be written as:

Si(t1,t2) = miGi +DCi(t1)+di(t1)−DCi(t2)−di(t2)
(4)

Here,DCi(t) denotes the number of tokensai has at time
t anddi(t) denotes the number of outstanding scheduled
(but not completed) requests fromai at timet.

Noting that 0≤ DCi(t) ≤ Gi and 0≤ di(t) ≤ D, we
can upper bound the expression forSi as:

Si(t1, t2)≤miGi +Gi +D (5)

Similarly, the lower bound is:

Si(t1, t2)≥miGi−Gi−D (6)

Considering the upper and lower bounds for applica-
tionsai anda j respectively, we get:

Si(t1, t2)
wi

≤
miGi

wi
+Gi/wi +D/wi (7)

Sj(t1, t2)
wj

≥
mjG j

wj
−G j/wj −D/wj (8)

Hence the difference is bounded by:
Si(t1,t2)

wi
−

Sj (t1,t2)
w j

≤ mi Gi
wi

+ (Gi+D)
wi
−

mj Gj
w j
−

(Gj +D)
w j

Let τi andτ j be the number of rounds between suc-
cessive quantum allocations to applicationsai anda j re-
spectively. These values will non-zero because if an ap-
plication has high batch sizeGi , then it may have to skip
a few rounds in order to maintain proportionate fairness
over a long run. Figure 12 illustrates the parameters used
in proof. Here applicationai gets its quantum allocation
Gi every alternate round. Henceτi = 2. Also within a
time interval[t1, t2], ai may getmi = 10 such allocations.
Similarly applicationa j gets its quantum allocation of
G j every fourth round, henceτ j =4. Also in the same

intervala j will get at least 4 (mj = 5) allocations. The
numbersτk andmk depend on the batch size and weights
of different applications.

The length of time interval [t1,t2] is at least(mi−1)τi.
Consider the other applicationa j : during interval [t1,t2],
it will receive at leastmj quantum allocations given by:

mj = ⌊(mi−1)τi/τ j⌋ (9)

Based on the computation ofGi and τi , we also know
that

Gi ∗ τ j

G j ∗ τi
=

wi

wj
(10)

This is because the overall allocation per round must be
in ratio of the weights. Substitutingmj andG j/wj from
the equations above, we get:

mjG j/wj ≥ G j((mi−1)τi/τ j −1)/wj (11)

= Giτ j((mi−1)τi/τ j −1)/(wiτi) (12)

= Gimi/wi−Gi/wi−Giτ j/(wiτi) (13)

= Gimi/wi−Gi/wi−G j/wj (14)

Substituting in the difference computation, we get:
Si(t1,t2)

wi
−

Sj (t1,t2)
w j

≤ (Gi+D)
wi

+Gi
wi

+
Gj
w j

+
(Gj +D)

w j

By grouping the terms for G and D we get:
∣

∣

∣

Si(t1,t2)
wi
−

Sj (t1,t2)
w j

∣

∣

∣
≤ 2(Gi

wi
+

Gj
w j

)+D(1
wi

+ 1
w j

)

Rounds

t1
t2

mi = 10 τi = 2

mj = 5 τ j = 4
Scheduling ofa j

Scheduling ofai

Figure 12: Illustration for proof

Essentially, the theorem says that the bound on unfair-
ness increases proportionally with a linear combination
of the concurrency boundD and the batch size parame-
tersGi andG j .

8.2 Time Slicing at Disk
In this section, we take a closer look at the alternative ap-
proach of time slicing at the disk and discuss some of the
fundamental issues with that approach. We implemented
a DRR-timeslice algorithm that does time multiplexing
at a fine granularity. The length of an application’s time
slices is proportional to the weight of the application. If
an application has no more requests to send, it will wait

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450

C
um

ul
at

iv
e

pr
op

or
tio

n

Latency (ms)

DRR

DRR-timeslice

DRR-timeslice
DRR

(a) Latency distribution

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

IO
s/

s)

Time

DRR
DRR-timeslice

(b) Throughput

Figure 13: Comparison of time slicing and proportional
share scheduling.

if the lower level queue has at least one request pending
(D ≥ 1), otherwise the DRR-timeslice will move on to
the next application’s time slice. Thus, we chose to end
the time slice as soon as an application becomes inac-
tive; we made this choice to make the scheduler work-
conserving.

In this experiment, we used four random workloads,
each keeping 8 requests pending, with equal weights.
The back-end queue depth is 16. We set the time-slice
to be 100ms for each workload. Figure 13 shows the
cumulative distribution of latency for one of the work-
loads and the average total throughput. This shows that
almost 60% of IOs have a small latency of around 50ms
and the remaining have a latency of more than 300ms.
This number is dependent on the workloads (four in this
case); with a larger number of workloads, the maxi-
mum latency would be higher. By contrast, the DRR
algorithm has less jitter. DRR also has better overall
throughput. DRR obtains around 320 IOs/s, whereas
DRR-timeslice obtains only around 215 IOs/s. In the
case of time slicing we can only use the concurrency
from a single workload (8 in our case), whereas the DRR
algorithm maintains 16 IOs in the back-end queue. Thus,
DRR-timeslice loses the improvements in efficiency as-
sociated with higher concurrency (better seek optimiza-
tions and higher parallelism). A good time-slicing mech-
anism should figure out when to isolate and merge the
IO workloads, instead of doing strict time multiplexing

at all times.

